Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; 353(5): e1900351, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32187709

RESUMO

A new series of N-substituted pyrazoline derivatives 6a-g, 7a-g, 8a-g, and 9a-g was synthetized by reaction of hydrazine derivatives and chalcone-thiazole hybrids bearing nitrogen mustard 5a-g. The chalcones 5a-g were obtained by Claisen-Schmidt condensation of thiazole-2-nitrogen mustard 3 and selected acetophenones 4a-g. These new compounds 6/7/8/9a-g were screened for their antifungal activity against Cryptococcus neoformans, with IC50 values of 3.9-7.8 µg/ml for the N-3,5-dichlorophenyl pyrazolines 9e-g. Interestingly, those compounds show low cytotoxic effects toward erythrocytes (RBC). In addition, N-acetyl (6a,b) and N-formyl pyrazolines (7a, 7b, 7c, and 7g) showed inhibitory activity against methicillin-susceptible Staphylococcus aureus, methicillin-resistant S. aureus, and vancomycin-intermediate S. aureus, with the most important minimum inhibitory concentration values ranging from 31.25 to 125 µg/ml. Regarding the antiprotozoal activity, thiazolyl-pyrazolines 9g, 8f, and 7c display high activity against Plasmodium falciparum, Leishmania (V) panamensis, and Trypanosoma cruzi, with EC50 values of 11.80, 6.46, and 4.98 µM, respectively, and with 7c being approximately 2.6-fold more potent than benznidazole with a selectivity index of 1.61 on U-937 human cells, showing promising potential as a novel antitrypanosomal agent.


Assuntos
Antibacterianos/farmacologia , Antiprotozoários/farmacologia , Mecloretamina/farmacologia , Pirazóis/farmacologia , Tiazóis/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Leishmania/efeitos dos fármacos , Mecloretamina/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Pirazóis/química , Relação Estrutura-Atividade , Tiazóis/química , Trypanosoma cruzi/efeitos dos fármacos , Staphylococcus aureus Resistente à Vancomicina/efeitos dos fármacos
2.
Mutat Res ; 765: 40-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24632511

RESUMO

Alkylating agents are used in anti-tumor chemotherapy because they bind covalently to DNA and generate adducts that may lead to cell death. Bifunctional (HN2) and monofunctional (HN1) nitrogen are two such agents, and HN2 was the first drug successfully employed in anti-leukemia chemotherapy. Currently, HN2 is used either alone or combined with other drugs to treat Hodgkin's disease. It is well known that several crosslinking agents require metabolic activation via reactive oxygen species (ROS) to exert their lethal effects. The objective of this work was therefore to determine whether the abovementioned mustards would also require metabolic activation to exert lethal action against Escherichia coli. For this purpose, we measured survival following exposure to HN2 in E. coli strains that were deficient in nucleotide excision repair (uvrA NER mutant), base excision repair (xthA nfo nth fpg BER mutant) or superoxide dismutase (sodAB mutant) activity. We also performed the same experiments in cells pretreated with an iron chelator (2,2'-dipyridyl, DIP). The NER and BER mutants were only sensitive to HN2 treatment (survival rates similar to those of the wild-type were achieved with 5-fold lower HN2 doses). However, wild-type and sodAB strains were not sensitive to treatment with HN2. In all tested strains, survival dropped by 2.5-fold following pretreatment with DIP compared to treatment with HN2 alone. Furthermore, DIP treatment increased ROS generation in both wild type and sodAB-deficient strains. Based on these data and on the survival of the SOD-deficient strain, we suggest that the increased production of ROS caused by Fe(2+) chelation may potentiate the lethal effects of HN2 but not HN1. This potentiation may arise as a consequence of enhancement in the number of or modification of the type of lesions formed. No sensitization was observed for the non-crosslinkable HN2 analog, HN1.


Assuntos
2,2'-Dipiridil/farmacologia , Antineoplásicos Alquilantes/farmacologia , Quelantes/farmacologia , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Mecloretamina/farmacologia , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/genética , Mutação , Espécies Reativas de Oxigênio/metabolismo
3.
Cell Cycle ; 9(11): 2220-9, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21577056

RESUMO

Kin3 is a nonessential serine/threonine protein kinase of the budding yeast Saccharomyces cerevisiae with unknown cellular role. It is an ortholog of the Aspergillus nidulans protein kinase NIMA (Never-In Mitosis, gene A), which is involved in the regulation of G2/M phase progression, DNA damage response and mitosis. The aim of this study was to determine whether Kin3 is required for proper checkpoint activation and DNA repair. Here we show that KIN3 gene deficient cells present sensitivity and fail to arrest properly at G2/M-phase checkpoint in response to the DNA damage inducing agents MMS, cisplatin, doxorubicin and nitrogen mustard, suggesting that Kin3 can be involved in DNA strand breaks recognition or signaling. In addition, there is an increase in KIN3 gene expression in response to the mutagenic treatment, which was confirmed by the increase of Kin3 protein. We also showed that co-treatment with caffeine induces a slight increase in the susceptibility to genotoxic agents in kin3 cells and abolishes KIN3 gene expression in wild-type strain, suggesting that Kin3p can play a role in Tel1/Mec1-dependent pathway activation induced after genotoxic stress. These data provide the first evidence of the involvement of S. cerevisiae Kin3 in the DNA damage response.


Assuntos
Adutos de DNA/química , Reparo do DNA , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Cafeína/farmacologia , Divisão Celular , Cisplatino/farmacologia , Adutos de DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Doxorrubicina/farmacologia , Fase G2 , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mecloretamina/farmacologia , Mitose , Proteínas Serina-Treonina Quinases/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Transdução de Sinais
4.
Curr Genet ; 37(2): 75-8, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10743562

RESUMO

The Saccharomyces cerevisiae Sgs1 protein, together with Schizosaccharomyces pombe Rqh1 and the human Bloom and Werner proteins, is a DNA helicase of the Escherichia coli RecQ family. Mutation of SGS1 causes premature aging in yeast cells, including the accumulation of extrachromosomal rDNA circles. We have recently shown that Sgs1p interacts with the DNA repair Rad16p protein and is epistatic to Rad16p for UVC, 4-NQO and H2O2 lesions. Therefore we tested sgs1 strains containing mutations in the helicase and C-terminal domains. We demonstrate here that the helicase activity of the Sgs1 is important for most elements of the sgs1 mutation phenotype, including sensitivity to UVC, 4-NQO, H2O2, MMS and hydroxyurea.


Assuntos
DNA Helicases/metabolismo , Reparo do DNA , Saccharomyces cerevisiae/enzimologia , 4-Nitroquinolina-1-Óxido/farmacologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Divisão Celular/efeitos da radiação , DNA Helicases/genética , Peróxido de Hidrogênio/farmacologia , Hidroxiureia/farmacologia , Mecloretamina/farmacologia , Metanossulfonato de Metila/farmacologia , Mutagênicos/farmacologia , Mutação , Quinolonas/farmacologia , RecQ Helicases , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA