Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 30(8): 266, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007951

RESUMO

CONTEXT: Molecularly imprinted polymers (MIPs) have promising applications as synthetic antibodies for protein and peptide recognition. A critical aspect of MIP design is the selection of functional monomers and their adequate proportions to achieve materials with high recognition capacity toward their targets. To contribute to this goal, we calibrated a molecular dynamics protocol to reproduce the experimental trends in peptide recognition of 13 pre-polymerization mixtures reported in the literature for the peptide toxin melittin. METHODS: Three simulation conditions were tested for each mixture by changing the box size and the number of monomers and cross-linkers surrounding the template in a solvent-explicit environment. Fully atomistic MD simulations of 350 ns were conducted with the AMBER20 software, with ff19SB parameters for the peptide, gaff2 parameters for the monomers and cross-linkers, and the OPC water model. Template-monomer interaction energies under the LIE approach showed significant differences between high-affinity and low-affinity mixtures. Simulation systems containing 100 monomers plus cross-linkers in a cubic box of 90 Å3 successfully ranked the mixtures according to their experimental performance. Systems with higher monomer densities resulted in non-specific intermolecular contacts that could not account for the experimental trends in melittin recognition. The mixture with the best recognition capacity showed preferential binding to the 13-26-α-helix, suggesting a relevant role for this segment in melittin imprinting and recognition. Our findings provide insightful information to assist the computational design of molecularly imprinted materials with a validated protocol that can be easily extended to other templates.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Peptídeos/química , Meliteno/química , Polimerização , Polímeros Molecularmente Impressos/química , Impressão Molecular/métodos
2.
J Toxicol Environ Health B Crit Rev ; 27(2): 73-90, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38247328

RESUMO

Africanized bees have spread across the Americas since 1956 and consequently resulted in human and animal deaths attributed to massive attacks related to exposure from Argentina to the USA. In Brazil, more than 100,000 accidents were registered in the last 5 years with a total of 303 deaths. To treat such massive attacks, Brazilian researchers developed the first specific antivenom against Africanized honey bee sting exposure. This unique product, the first of its kind in the world, has been safely tested in 20 patients during a Phase 2 clinical trial. To develop the antivenom, a standardized process was undertaken to extract primary venom antigens from the Africanized bees for immunization of serum-producing horses. This process involved extracting, purifying, fractionating, characterizing, and identifying the venom (apitoxin) employing mass spectrometry to generate standardized antigen for hyperimmunization of horses using the major toxins (melittin and its isoforms and phospholipase A2). The current guide describes standardization of the entire production chain of venom antigens in compliance with good manufacturing practices (GMP) required by regulatory agencies. Emphasis is placed upon the welfare of bees and horses during this process, as well as the development of a new biopharmaceutical to ultimately save lives.


Assuntos
Venenos de Abelha , Mordeduras e Picadas de Insetos , Abelhas , Humanos , Animais , Antivenenos/uso terapêutico , Mordeduras e Picadas de Insetos/tratamento farmacológico , Venenos de Abelha/análise , Venenos de Abelha/química , Meliteno/análise , Meliteno/química , Fosfolipases A2 , Antígenos
3.
Sci Rep ; 8(1): 14329, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30254334

RESUMO

In recent years, synthetic peptides have been considered promising targets for drug development that possess low side-effects, are cost-effective and are susceptible to rational design. Hecate was initially described as a potent bacterial inhibitor and subsequently as an anticancer drug with functions related to its lipid interaction property. Viruses, such as hepatitis C virus (HCV), have a lipid-dependent life cycle and could be affected by Hecate in many ways. Here, we assessed modifications on Hecate's N-terminus region and its effects on HCV and hepatotoxicity. Gallic acid-conjugated Hecate was the most efficient Hecate-derivative, presenting high potential as an antiviral and inhibiting between 50 to 99% of all major steps within the HCV infectious cycle. However, the most promising aspect was GA-Hecate's mechanism of action, which was associated with a balanced lipid interaction with the viral envelope and lipid droplets, as well as dsRNA intercalation, allowing for the possibility to affect other ssRNA viruses and those with a lipid-dependent cycle.


Assuntos
Antivirais/química , Antivirais/farmacologia , Ácido Gálico/química , Hepacivirus/efeitos dos fármacos , Meliteno/química , Meliteno/farmacologia , Sequência de Aminoácidos , Antivirais/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Hepacivirus/fisiologia , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Humanos , Meliteno/toxicidade , Replicação Viral/efeitos dos fármacos
4.
Colloids Surf B Biointerfaces ; 146: 180-7, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27318963

RESUMO

We determined the rheological properties of ß-amyloid Langmuir films at the air/water interface, a peptide whose interfacial structure is extended ß-sheet, and compared them with those of films composed of Melittin (Mel), which adopts an α-helical conformation at neutral pH. To determine the dilatational and shear moduli we evaluated the response of pure peptide monolayers to an oscillatory anisotropic compressive work. Additionally, a micro-rheological characterization was performed by tracking the diffusion of micrometer sized latex beads onto the interface. This technique allowed us the detection of different rheological behaviour between monolayers presenting a low shear response. Monolayers of the ß-sheet structure-adopting peptides, such as ß-amyloid peptides, exhibited a marked shear (elastic) modulus even at low surface pressures. In contrast, Mel monolayers exhibited negligible shear modulus and the micro-rheological shear response was markedly lower than that observed for either Aß1-40 or Aß1-42 amyloid peptides. When Mel monolayers were formed at the interface of an aqueous solution at pH 11, we observed an increase in both the lateral stability and film viscosity as detected by a slower diffusion of the latex beads, in keeping with an increase in ß-sheet structure at this high pH (verified by ATR and FT-IR measurements). We suggest that the interactions responsible for the marked response upon shear observed for ß-amyloid peptide monolayers are the hydrogen bonds of the ß-sheet structure that can form an infinite planar network at the interface. Conversely, α-helical Mel peptide lack of these inter-molecular interactions and, therefore the shear contribution was negligible. We propose that the secondary structure is important for modulating the rheological behavior of short peptide monolayers regardless of the mass density or surface charge at the surface.


Assuntos
Peptídeos beta-Amiloides/química , Meliteno/química , Reologia , Humanos , Estrutura Secundária de Proteína , Propriedades de Superfície , Termodinâmica , Viscosidade
5.
Anal Chem ; 87(19): 10080-7, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26348271

RESUMO

The solvent accessible surface area (SASA) of the polypeptide chain plays a key role in protein folding, conformational change, and interaction. This fundamental biophysical parameter is elusive in experimental measurement. Our approach to this problem relies on the reaction of the minimal photochemical reagent diazirine (DZN) with polypeptides. This reagent (i) exerts solvent mimicry because its size is comparable to water and (ii) shows scant chemical selectivity because it generates extremely reactive methylene carbene. Methylation gives rise to the EM (extent of modification) signal, which is useful for scrutinizing the conformational change triggered by Ca(2+) binding to calmodulin (CaM). The increased EM observed for the full protein is dominated by the enhanced exposure of hydrophobic area in Ca(2+)-CaM. Fragmentation allowed us to quantify the methylene incorporation at specific sites. Peptide 91-106 reveals a major reorganization around the calcium 151 binding site, resulting in local ordering and a greater exposure of the hydrophobic surface. Additionally, this technique shows a high sensitivity to probe recognition between CaM and melittin (Mel). The large decrease in EM indicates the occlusion of a significant hydrophobic area upon complexation. Protection from labeling reveals a larger involvement of the N-terminal and central regions of CaM in this interaction. Despite its smaller size, Mel's differential exposure can also be quantified. Moreover, MS/MS fragmentation realizes the goal of extending the resolution of labeled sites at the amino acid level. Overall, DZN labeling emerges as a useful footprinting method capable of shedding light on physiological conformational changes and interactions.


Assuntos
Calmodulina/química , Diazometano/química , Meliteno/química , Metano/análogos & derivados , Sequência de Aminoácidos , Animais , Abelhas , Sítios de Ligação , Bovinos , Diazometano/metabolismo , Indicadores e Reagentes , Meliteno/metabolismo , Metano/química , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína , Solventes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
6.
Peptides ; 31(8): 1473-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20472009

RESUMO

Apis mellifera, the European honey bee, is perhaps the most studied insect in the Apidae family. Its venom is comprised basically of melittin, phospholipase A(2), histamine, hyaluronidase, cathecolamines and serotonin. Some of these components have been associated to allergic reactions, among several other symptoms. On the other hand, bee mass-stinging is increasingly becoming a serious public health issue; therefore, the development of efficient serum-therapies has become necessary, with a consequent better characterization of the venom. In this work, we report the isolation and biochemical characterization of melittin-S, an isoform of melittin comprising a Ser residue at the 10th position, from the venom of Africanized A. mellifera. This peptide demonstrated to be less hemolytic than melittin and to adopt a less organized secondary structure, as assessed by circular dichroism spectroscopy. Melittin-S venom contents varied seasonally, and the maximum secretion occurred during the (southern) winter months. Data on the variation of the honey bee venom composition are necessary to guide future immunological studies, aiming for the development of an efficient anti-serum against Africanized A. mellifera venom and, consequently, an effective treatment for the victims of mass-stinging.


Assuntos
Abelhas/metabolismo , Meliteno/isolamento & purificação , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Antivenenos/imunologia , Brasil , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Sequência Consenso , Hemólise/efeitos dos fármacos , Proteínas de Insetos/análise , Proteínas de Insetos/química , Proteínas de Insetos/isolamento & purificação , Proteínas de Insetos/farmacologia , Meliteno/análise , Meliteno/química , Meliteno/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Isoformas de Proteínas/análise , Isoformas de Proteínas/química , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/farmacologia , Estrutura Secundária de Proteína , Estações do Ano , Análise de Sequência de Proteína , Espectrometria de Massas por Ionização por Electrospray
7.
J Mol Graph Model ; 25(6): 767-72, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16905347

RESUMO

Melittin is a well-known water-soluble toxic peptide present in bee venom of Apis mellifera, capable of interacting with and disrupting cell membranes thus producing many effects on living cells. Additionally, melittin induces activation of phospholipases and calmodulin upon interaction with cellular membranes. The conformation and aggregation state adopted by melittin in solution depends on several factors including the peptide concentration, ionic strength, pH and the nature of the ions in the aqueous medium. Such conformational dependence on the peptide environment gives new insights over the currently available 3D structures of melittin and, ultimately, over its biologically functional unit. Based on crystallographic data, the melittin tetramer has been proposed as its bioactive form. Contrarily to such data, we show in this work the results obtained from molecular dynamics simulations, which clearly indicate that the tetrameric organization of melittin is not stable under biological conditions dissociating after 2.5 ns through a 10 ns trajectory. We found that the tetrameric form of melittin is stable only in conditions of high pH and high peptide concentration in the molecular dynamics simulations. Moreover, when in plasma melittin appears to be a random coil monomer, folding only upon interaction with biological membranes. In summary, these findings elucidate several properties of melittin structure and dynamics, projecting significant implications in the study of its biological function.


Assuntos
Venenos de Abelha/química , Abelhas/química , Meliteno/química , Animais , Simulação por Computador , Modelos Moleculares , Dobramento de Proteína , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA