Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biochemistry ; 63(6): 815-826, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38349279

RESUMO

Membrane fusion is a crucial mechanism in a wide variety of important events in cell biology from viral infection to exocytosis. However, despite many efforts and much progress, cell-cell fusion has remained elusive to our understanding. Along the life of the fusion pore, large conformational changes take place from the initial lipid bilayer bending, passing through the hemifusion intermediates, and ending with the formation of the first nascent fusion pore. In this sense, computer simulations are an ideal technique for describing such complex lipid remodeling at the molecular level. In this work, we studied the role played by the muscle-specific membrane protein Myomerger during the formation of the fusion pore. We have conducted µs length atomistic and coarse-grained molecular dynamics, together with free-energy calculations using ad hoc collective variables. Our results show that Myomerger favors the hemifusion diaphragm-stalk transition, reduces the nucleation-expansion energy difference, and promotes the formation of nonenlarging fusion pores.


Assuntos
Bicamadas Lipídicas , Fusão de Membrana , Bicamadas Lipídicas/metabolismo , Fusão de Membrana/fisiologia , Membranas/metabolismo , Simulação de Dinâmica Molecular , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo
2.
Molecules ; 29(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38398572

RESUMO

Professor Carlos Gutiérrez-Merino, a prominent scientist working in the complex realm of biological membranes, has made significant theoretical and experimental contributions to the field. Contemporaneous with the development of the fluid-mosaic model of Singer and Nicolson, the Förster resonance energy transfer (FRET) approach has become an invaluable tool for studying molecular interactions in membranes, providing structural insights on a scale of 1-10 nm and remaining important alongside evolving perspectives on membrane structures. In the last few decades, Gutiérrez-Merino's work has covered multiple facets in the field of FRET, with his contributions producing significant advances in quantitative membrane biology. His more recent experimental work expanded the ground concepts of FRET to high-resolution cell imaging. Commencing in the late 1980s, a series of collaborations between Gutiérrez-Merino and the authors involved research visits and joint investigations focused on the nicotinic acetylcholine receptor and its relation to membrane lipids, fostering a lasting friendship.


Assuntos
Lipídeos de Membrana , Receptores Nicotínicos , Membrana Celular/metabolismo , Lipídeos de Membrana/química , Transferência Ressonante de Energia de Fluorescência , Membranas/metabolismo , Receptores Nicotínicos/metabolismo
3.
Emerg Top Life Sci ; 7(1): 111-124, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36951374

RESUMO

Cell membranes are quasi-bidimensional soft systems formed by multipoles in an ordered array that can be polarized in an electric field. Consequently, electrostatic potentials emerge inside membranes, and membranes respond to external electric fields. From a mechanical perspective, membranes can be easily compressed-expanded, laterally deformed, and curved. Bending is particularly easy, and this kind of deformation translates to changes in the relative positions of the negative and positive charges, leading to strain gradient-induced polarization. Conversely, an external electric field gradient will exert a bending stress that translates to mechanical membrane deformation. These phenomena are described through membrane flexoelectricity. Here, we describe this property in lipid bilayers and cell membranes and summarize the studies in the field with emphasis on the effects promoted by membrane asymmetry.


Assuntos
Eletricidade , Bicamadas Lipídicas , Eletricidade Estática , Bicamadas Lipídicas/metabolismo , Membrana Celular/metabolismo , Membranas/metabolismo
4.
Sci Rep ; 12(1): 19880, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400938

RESUMO

Crossing the cellular membrane is one of the main barriers during drug discovery; many potential drugs are rejected for their inability to integrate into the intracell fluid. Although many solutions have been proposed to overcome this barrier, arguably the most promising solution is the use of cell-penetrating peptides. Recently, an array of hydrophobic penetrating peptides was discovered via high throughput screening which proved to be able to cross the membrane passively, and although these peptides proved to be effective at penetrating the cell, the details behind the underlying mechanism of this process remain unknown. In this study, we developed a method to find the equilibrium structure at the transmembrane domain of TP1, a hydrophobic penetrating peptide. In this method, we selectively deuterium-label amino acids in the peptidic chain, and employ results of [Formula: see text]H-NMR spectroscopy to find a molecular dynamics simulation of the peptide that reproduces the experimental results. Effectively finding the equilibrium orientation and dynamics of the peptide in the membrane. We employed this equilibrium structure to simulate the entire translocation mechanism and found that after the peptide reaches its equilibrium structure, it must undergo a two-step mechanism in order to completely translocate the membrane, each step involving the flip-flop of each arginine residue in the peptide. This leads us to conclude that the RLLR motif is essential for the translocating activity of the peptide.


Assuntos
Peptídeos Penetradores de Células , Membrana Celular/metabolismo , Membranas/metabolismo , Peptídeos Penetradores de Células/química , Simulação de Dinâmica Molecular , Interações Hidrofóbicas e Hidrofílicas
5.
Protein Sci ; 31(7): e4360, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35762717

RESUMO

Recent studies revealed that molecular events related with the physiology and pathology of αS might be regulated by specific sequence motifs in the primary sequence of αS. The importance of individual residues in these motifs remains an important open avenue of investigation. In this work, we have addressed the structural details related to the amyloid fibril assembly and lipid-binding features of αS through the design of site-directed mutants at position 39 of the protein and their study by in vitro and in vivo assays. We demonstrated that aromaticity at position 39 of αS primary sequence influences strongly the aggregation properties and the membrane-bound conformations of the protein, molecular features that might have important repercussions for the function and dysfunction of αS. Considering that aggregation and membrane damage is an important driver of cellular toxicity in amyloid diseases, future work is needed to link our findings with studies based on toxicity and neuronal cell death. BRIEF STATEMENT OUTLINING SIGNIFICANCE: Modulation by distinct sequential motifs and specific residues of αS on its physiological and pathological states is an active area of research. Here, we demonstrated that aromaticity at position 39 of αS modulates the membrane-bound conformations of the protein, whereas removal of aromatic functionality at position 39 reduces strongly the amyloid assembly in vitro and in vivo. Our study provides new evidence for the modulation of molecular events related with the physiology and pathology of αS.


Assuntos
Amiloide , alfa-Sinucleína , Amiloide/genética , Amiloide/metabolismo , Membranas/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , alfa-Sinucleína/química
6.
Sci Rep ; 12(1): 933, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042922

RESUMO

Combining single cell experiments, population dynamics and theoretical methods of membrane mechanics, we put forward that the rate of cell proliferation in E. coli colonies can be regulated by modifiers of the mechanical properties of the bacterial membrane. Bacterial proliferation was modelled as mediated by cell division through a membrane constriction divisome based on FtsZ, a mechanically competent protein at elastic interaction against membrane rigidity. Using membrane fluctuation spectroscopy in the single cells, we revealed either membrane stiffening when considering hydrophobic long chain fatty substances, or membrane softening if short-chained hydrophilic molecules are used. Membrane stiffeners caused hindered growth under normal division in the microbial cultures, as expected for membrane rigidification. Membrane softeners, however, altered regular cell division causing persistent microbes that abnormally grow as long filamentous cells proliferating apparently faster. We invoke the concept of effective growth rate under the assumption of a heterogeneous population structure composed by distinguishable individuals with different FtsZ-content leading the possible forms of cell proliferation, from regular division in two normal daughters to continuous growing filamentation and budding. The results settle altogether into a master plot that captures a universal scaling between membrane rigidity and the divisional instability mediated by FtsZ at the onset of membrane constriction.


Assuntos
Membrana Celular/metabolismo , Proliferação de Células/fisiologia , Escherichia coli/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/genética , Divisão Celular/fisiologia , Membrana Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Membranas/metabolismo
7.
PLoS One ; 15(11): e0238545, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33156858

RESUMO

Extracellular vesicles (EV) have attracted much attention as potential biomarkers due to their protein, RNA and other nucleic acid content. The most common method used for EV isolation is differential ultracentrifugation (DU), however given the DU technical difficulties, other more practical methods have surged, such as membrane-affinity column commercial kits. Here, we assessed one commercial kit in terms of EV recovery and EV-derived RNA yield and compared it with a DU protocol. Our data shows that the commercial kit preparation results in a lower count of EV-like structures and a reduced expression of EV markers when compared to DU samples. Thus, apparently suggesting that the commercial kit had a lower EV yield. However, these findings did not reflect on RNA yield, which was greater with the commercial kit, even after an enzymatic treatment with proteinase K and RNAse A. We conclude that the kit has a higher EV-derived RNA yield in comparison to our DU protocol, suggesting that it may be the method of choice for RNA sequencing purposes.


Assuntos
Vesículas Extracelulares/genética , Membranas/metabolismo , RNA/genética , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Humanos , Ultracentrifugação/métodos
8.
Biochim Biophys Acta Biomembr ; 1862(3): 183139, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31812625

RESUMO

Plasma membrane repair (PMR) is an important process for cell homeostasis, especially for cells under constant physical stress. Repair involves a sequence of Ca2+-dependent events, including lysosomal exocytosis and subsequent compensatory endocytosis. Cholesterol sequestration from plasma membrane causes actin cytoskeleton reorganization and polymerization, increasing cell stiffness, which leads to exocytosis and reduction of a peripheral pool of lysosomes involved in PMR. These changes in mechanical properties are similar to those observed in cells exposed to oxidized Low Density Lipoprotein (oxLDL), a key molecule during atherosclerosis development. Using a human umbilical vein endothelial cell line (EAhY926) we evaluated the influence of mechanical modulation induced by oxLDL in PMR and its effect in endothelial fragility. Similar to MßCD (a drug capable of sequestering cholesterol) treatment, oxLDL exposure led to actin reorganization and de novo polymerization, as well as an increase in cell rigidity and lysosomal exocytosis. Additionally, for both MßCD and oxLDL treated cells, there was an initial increase in endocytic events, likely triggered by the peak of exocytosis induced by both treatments. However, no further endocytic events were observed, suggesting that constitutive endocytosis is blocked upon treatment and that the reorganized cytoskeleton function as a mechanical barrier to membrane traffic. Finally, the increase in cell rigidity renders cells more prone to mechanical injury. Together, these data show that mechanical modulation induced by oxLDL exposure not only alters membrane traffic in cells, but also makes them more susceptible to mechanical injury, which may likely contribute to the initial steps of atherosclerosis development.


Assuntos
Membrana Celular/metabolismo , Lipoproteínas LDL/metabolismo , Actinas/metabolismo , Membrana Celular/fisiologia , Movimento Celular , Células Cultivadas , Colesterol/metabolismo , Citoesqueleto/metabolismo , Endocitose/fisiologia , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Exocitose/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Lipoproteínas LDL/fisiologia , Lisossomos/metabolismo , Membranas/metabolismo , Transporte Proteico
9.
Acta Vet Hung ; 67(2): 296-306, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31238730

RESUMO

The aim of this study was the preparation and histological evaluation of Leukocyte- and Thrombocyte-Rich Fibrin (L-TRF) membranes obtained from the blood of four bird species. Forty adult healthy birds were divided into four groups of equal size: G1 - macaws, G2 - domestic chickens, G3 - parrots, G4 - toco toucans. A total of 0.5 mL of blood was collected from each bird, put into a glass tube without anticoagulant and centrifuged at 3000 rpm for 10 min. L-TRF membranes produced after compression of the clot were processed for histological analysis. The ratio of thrombocytes/area was not significantly different among Groups G2, G3 and G4, but a significant difference was found between Groups G1 and G2 with the highest thrombocyte concentration/area in G1. The groups did not differ statistically in the number of leukocytes/area. The fibrin-to-cells ratio did not vary statistically among Groups G1, G2 and G3, but this ratio was significantly higher in Group G4 than in the other groups. The thrombocyte-to-leukocyte ratio was the highest in Group G1, but it did not differ among Groups G2, G3 and G4. In conclusion, the centrifugation protocol allowed the production of L-TRF membranes in the four bird species studied. Histologically, cell ratios were analogous in domestic chickens and parrots, and macaws had the highest ratio of thrombocytes.


Assuntos
Plaquetas/metabolismo , Fibrina/metabolismo , Leucócitos/metabolismo , Membranas/metabolismo , Animais , Aves , Galinhas , Papagaios , Fibrina Rica em Plaquetas/metabolismo
10.
J Fluoresc ; 26(2): 709-17, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26753756

RESUMO

In this work, we developed an experimental apparatus to directly measure transmittance and fluorescence in the stratum corneum (SC) ex vivo. The SC transmittance varied from ~6 to ~52 % in the wavelength range of 280-850 nm. For 260-300 nm excitation, the SC autofluorescence showed a strong emission band between 290 and 425 nm, which is associated with tryptophan, and another in the 600-670 nm range, which we attributed to a process involving resonance energy transfer to very hydrophobic keratin filaments. Weaker emission associated with less hydrophobic keratin filaments was also observed in the wavelength range of 350-480 nm. Protoporphyrin IX (PpIX) was incorporated into SC membranes, and its penetration was further increased by the addition of nerolidol to the treatment suspension. Both PpIX and the endogenous porphyrins showed fluorescence anisotropy consistent with their localization in SC membranes, and their molecular dynamics increased significantly in the presence of 1 % nerolidol. The emission and excitation spectra of PpIX and the endogenous SC porphyrins showed similar alterations during the photobleaching induced by 405-nm irradiation. This work also highlights the SC contribution to skin autofluorescence, which could be useful for fluorescence spectroscopy applications in the early diagnosis of skin diseases.


Assuntos
Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Fluorescência , Fármacos Fotossensibilizantes/farmacologia , Protoporfirinas/metabolismo , Sesquiterpenos/farmacologia , Fenômenos Fisiológicos da Pele/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Junções Intercelulares/efeitos dos fármacos , Junções Intercelulares/metabolismo , Membranas/efeitos dos fármacos , Membranas/metabolismo , Fotoquimioterapia , Ratos , Ratos Wistar , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA