Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
PLoS One ; 19(6): e0302025, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843173

RESUMO

In dengue-endemic areas, transmission control is limited by the difficulty of achieving sufficient coverage and sustainability of interventions. To maximize the effectiveness of interventions, areas with higher transmission could be identified and prioritized. The aim was to identify burden clusters of Dengue virus (DENV) infection and evaluate their association with microclimatic factors in two endemic towns from southern Mexico. Information from a prospective population cohort study (2·5 years of follow-up) was used, microclimatic variables were calculated from satellite information, and a cross-sectional design was conducted to evaluate the relationship between the outcome and microclimatic variables in the five surveys. Spatial clustering was observed in specific geographic areas at different periods. Both, land surface temperature (aPR 0·945; IC95% 0·895-0·996) and soil humidity (aPR 3·018; IC95% 1·013-8·994), were independently associated with DENV burden clusters. These findings can help health authorities design focused dengue surveillance and control activities in dengue endemic areas.


Assuntos
Vírus da Dengue , Dengue , Microclima , Humanos , Dengue/epidemiologia , Dengue/transmissão , México/epidemiologia , Feminino , Masculino , Estudos Transversais , Adulto , Adolescente , Estudos Prospectivos , Criança , Doenças Endêmicas , Adulto Jovem , Pessoa de Meia-Idade , Pré-Escolar , Umidade , Análise por Conglomerados , Temperatura
2.
Int J Biometeorol ; 68(8): 1519-1531, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38679662

RESUMO

Little has been studied about microclimate and the thermal comfort during the implementation of silvopastoral systems. This study aimed to evaluate the microclimate and thermal comfort during the implementation of High Biodiversity Silvopastoral System with Nuclei (SPSnu). Three treatments were investigated, SPSnu with 5 and 10% of the pasture area with nuclei, (SPSnu5 and SPSnu10, respectively), and treeless pasture (TLP). Each treatment was subdivided into 4 areas: within the nuclei, around the nuclei, around the nuclei with shade and internuclei. The analyzed variables were soil surface temperature, air temperature, wind speed, relative humidity, black globe temperature and the Heat Load Index (HLI) at 20 and 120 cm height. We hypothesized that the wind speed reduction associated with insufficient shade projection typical of the first years of SPSs may interfere in microclimate and thermal comfort during the hot seasons. SPSnu5 and SPSnu10 had a reduction in wind speed of 51.58% and 68.47% respectively when compared to TLP at 20 cm. Soil surface temperature and air temperature at 120 cm were higher for SPSnu than TLP. The same effect was observed for the HLI. At 20 cm, HLI indicated better thermal comfort in TLP than in the SPSnu treatments. The lack of shade projection from young nuclei in conjunction with the decrease of wind speed between the nuclei caused a higher air temperature and HLI in the SPSnu treatments, we called this conditions, windbreak countereffect. Farmers must knowledge this effect when implementing SPSs, and when necessary, mitigate with the proper management decisions.


Assuntos
Microclima , Temperatura , Vento , Agricultura/métodos , Umidade , Solo , Sensação Térmica , Biodiversidade
3.
PeerJ ; 12: e16986, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685936

RESUMO

Environmental heterogeneity poses a significant influence on the functional characteristics of species and communities at local scales. Environmental transition zones, such as at the savanna-forest borders, can act as regions of ecological tension when subjected to sharp variations in the microclimate. For ectothermic organisms, such as lizards, environmental temperatures directly influence physiological capabilities, and some species use different thermoregulation strategies that produce varied responses to local climatic conditions, which in turn affect species occurrence and community dynamics. In the context of global warming, these various strategies confer different types of vulnerability as well as risks of extinction. To assess the vulnerability of a species and understand the relationships between environmental variations, thermal tolerance of a species and community structure, lizard communities in forest-savanna transition areas of two national parks in the southwestern Amazon were sampled and their thermal functional traits were characterized. Then, we investigated how community structure and functional thermal variation were shaped by two environmental predictors (i.e., microclimates estimated locally and vegetation structure estimated from remote sensing). It was found that the community structure was more strongly predicted by the canopy surface reflectance values obtained via remote sensing than by microclimate variables. Environmental temperatures were not the most important factor affecting the occurrence of species, and the variations in ecothermal traits demonstrated a pattern within the taxonomic hierarchy at the family level. This pattern may indicate a tendency for evolutionary history to indirectly influence these functional features. Considering the estimates of the thermal tolerance range and warming tolerance, thermoconformer lizards are likely to be more vulnerable and at greater risk of extinction due to global warming than thermoregulators. The latter, more associated with open environments, seem to take advantage of their lower vulnerability and occur in both habitat types across the transition, potentially out-competing and further increasing the risk of extinction and vulnerability of forest-adapted thermoconformer lizards in these transitional areas.


Assuntos
Lagartos , Microclima , Floresta Úmida , Animais , Lagartos/fisiologia , Pradaria , Brasil , Aquecimento Global
4.
J Tissue Viability ; 33(2): 305-311, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38553355

RESUMO

OBJECTIVE: this study was undertaken to evaluate the efficacy of multilayer polyurethane foam with silicone (MPF) compared to transparent polyurethane film (TPF) dressings in the control of heel skin microclimate (temperature and moisture) of hospitalized patients undergoing elective surgeries. METHOD: the study took of a secondary analysis of a randomized self-controlled trial, involving patients undergoing elective surgical procedure of cardiac and gastrointestinal specialties in a university hospital in southern Brazil, from March 2019 to February 2020. Patients served as their own control, with their heels randomly allocated to either TPF (control) or MPF (intervention). Skin temperature was measured using a digital infrared thermometer; and moisture determined through capacitance, at the beginning and end of surgery. The study was registered in the Brazilian Registry of Clinical Trials: RBR-5GKNG5. RESULTS: significant difference in the microclimate variables were observed when the groups (intervention and control) and the timepoint of measurement (beginning and end of surgery) were compared. When assessing temperature, an increase (+3.3 °C) was observed with TPF and a decrease (-7.4 °C) was recorded with MPF. Regarding skin moisture, an increase in moisture (+14.6 AU) was recorded with TPF and a slight decrease (-0.3 AU) with MPF. CONCLUSIONS: The findings of this study suggest that MPF is more effective than TPF in controlling skin microclimate (temperature and moisture) in heels skin of hospitalized patients undergoing elective surgeries. However, this control should be better investigated in other studies.


Assuntos
Calcanhar , Microclima , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Brasil , Idoso , Temperatura Cutânea/fisiologia , Bandagens/normas , Bandagens/estatística & dados numéricos , Poliuretanos , Adulto
5.
Int J Biometeorol ; 68(4): 675-690, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38180571

RESUMO

This study aims to evaluate agreement among subjective thermal comfort, thermal sensation, thermal perception, and thermal tolerance indices, according to pedestrians in downtown Santa Maria, southern Brazil, which has a humid subtropical climate (Cfa). Between August 2015 and July 2016 (three periods), 1728 questionnaires were applied. Evaluation of the dependence of statistical variables was based on gender and age, at three periods of time: August 2015 (864 respondents), January 2016 (432 respondents), and July 2016 (432 respondents). Statistical evaluation was based on Pearson's chi-square test using RStudio software, and a significance level (α) of 5% for thermal comfort, thermal sensation, thermal preference, and thermal tolerance was used. Results indicated that age and gender affect the relationship between the variables. Thermal comfort and thermal tolerance presented the best correlation and coherence, regardless of age or gender. This study contributes to knowledge on the local microclimate and can contribute to urban planning to implement strategies that improve pedestrians' thermal comfort.


Assuntos
Pedestres , Humanos , Clima , Microclima , Sensação Térmica , Percepção , Cidades
6.
Environ Sci Pollut Res Int ; 31(8): 12257-12270, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38227262

RESUMO

Although the abundance, survival, and pollination performance of honeybees are sensitive to changes in habitat and climate conditions, the processes by which these effects are transmitted to honey production and interact with beekeeping management are not completely understood. Climate change, habitat degradation, and beekeeping management affect honey yields, and may also interact among themselves resulting in indirect effects across spatial scales. We conducted a 2-year, multi-scale study on Chiloe Island (northern Patagonia), where we evaluated the most relevant environmental and management drivers of honey produced by stationary beekeepers. We found that the effects of microclimate, habitat, and management variables changed with the spatial scale. Among the environmental variables, minimum temperature, and cover of the invasive shrub, gorse (Ulex europaeus) had the strongest detrimental impacts on honey production at spatial scales finer than 4 km. Specialized beekeepers who adopted conventional beekeeping and had more mother colonies were more productive. Mean and minimum temperatures interacted with the percentage of mother colonies, urban cover, and beekeeping income. The gorse cover increased by the combination of high temperatures and the expansion of urban lands, while landscape attributes, such as Eucalyptus plantation cover, influenced beekeeping management. Results suggest that higher temperatures change the available forage or cause thermal stress to honeybees, while invasive shrubs are indicators of degraded habitats. Climate change and habitat degradation are two interrelated environmental phenomena whose effects on beekeeping can be mitigated through adaptive management and habitat restoration.


Assuntos
Mel , Abelhas , Animais , Mel/análise , Microclima , Criação de Abelhas/métodos , Ecossistema , Polinização
7.
Int J Biometeorol ; 67(7): 1199-1212, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37278864

RESUMO

This study aimed to assess the influence of the high biodiversity silvopastoral system (SPSnu) on the microclimate, pasture production, and pasture chemical composition. Microclimate variables and pasture production and chemical composition were measured in pared paddocks under SPSnu and treeless pasture (TLP) in a commercial farm during four seasons in Southern Brazil. SPSnu measurements were subdivided into two areas: around the nuclei (AN) and area inter-nuclei (IN). In the TLP paddocks, we plotted fictitious nuclei with the same areas and distributions of SPSnu, however without trees. For the microclimate measurements, these areas were noted when shaded or unshaded by the nuclei trees. In each season, the microclimate variables air temperature (AT, °C), relative humidity (RH, %), illuminance (Ilu, lux), wind speed (WS, m/s), and soil surface temperature (SST, °C) were measured. In addition, botanical composition (%), pasture production (kg/DM/ ha), and pasture chemical composition were evaluated. The SPSnu provided the lowest values of microclimate variables in all seasons (p < 0.05), except for the relative humidity. Winter had the highest thermal amplitude in the systems. The highest difference between SPSnu and TLP for AT (4.3 °C) and SST (5.2 °C) was measured during the hot seasons (spring and summer). In contrast, during cold seasons (autumn and winter) it observed highest thermal amplitude between SPSnu and TLP. Overall, the highest annual pasture production was observed in the SPSnu (p < 0.05). During the summer, the SPSnu areas showed the highest values of crude protein and dry matter (p < 0.05). During the winter, the TLP showed the lowest values (p < 0.05) of pasture production and dry matter. It was observed that SPSnu improved the microclimate at the pasture level, influencing pasture production and pasture chemical composition. The enhanced microclimate can partially mitigate some of the effects of climate change on pastoral agroecosystems, creating conditions for ecological rehabilitation of ecosystem processes and services. These conditions could be amplified to a biome level through a payment for ecosystem services program.


Assuntos
Ecossistema , Microclima , Temperatura , Temperatura Baixa , Árvores , Biodiversidade , Estações do Ano , Umidade
8.
J Anim Ecol ; 92(4): 925-935, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36744653

RESUMO

Climate temporality is a phenomenon that affects species activity and distribution patterns across spatial and temporal scales. Despite the global availability of microclimatic data, their use to predict activity patterns and distributions remains scarce, particularly at fine temporal scales (e.g. < month). Predicting activity patterns based on climatic data may allow us to foresee some of the consequences of climate change, particularly for ectothermic vertebrates. The Gila monster exhibits marked daily and seasonal activity patterns linked to physiology and reproduction. Here we evaluate whether ecological niche models fitted using microclimate data can predict temporal activity patterns using the Gila monster Heloderma suspectum as a study system. Furthermore, we identified whether the activity patterns are related to physiological constraints. We used dated occurrences from museum specimens and human observations to generate and test ecological niche models using minimum volume ellipsoids. We generated hourly microclimatic data for each occurrence site for 10 years using the NicheMapR package. For ecological niche modelling, we compared the traditional seasonal approach versus a daily activity pattern strategy for model construction. We tested both using the omission rate of independent observations (citizen science data). Finally, we tested whether unimodal and bimodal activity patterns for each season could be recreated through ecological niche modelling and whether these patterns followed known physiological constraints. The unimodal and bimodal activity patterns previously reported directly from tracking individuals across the year were recovered using niche modelling and microclimate across the species' geographical range. We found that upper thermal tolerances can explain the daily activity patterns of this species. We conclude that ecological niche models trained with microclimatic data can be used to predict activity patterns at high temporal resolutions, particularly on ectotherm species of arid zones coping with rapid climate modifications. Furthermore, the use of high temporal resolution variables can lead to a better niche delimitation, enhancing the results of any research objective that uses correlative models.


La estacionalidad climática es un fenómeno que afecta la actividad de las especies y los patrones de distribución a diferentes escalas espaciales y temporales. A pesar de la disponibilidad global de datos microclimáticos para estudiar dichos patrones, su uso sigue siendo escaso, particularmente en escalas temporales finas (e.g., < mes). La predicción de patrones de actividad basados en datos climáticos puede permitirnos prever algunas de las potenciales consecuencias del cambio climático, particularmente para los vertebrados ectotérmicos. El monstruo de Gila (Heloderma suspectum) exhibe marcados patrones de actividad diarios y estacionales vinculados a la fisiología y la reproducción. En este trabajo evaluamos cómo los modelos de nichos ecológicos ajustados con datos de microclima, pueden predecir patrones de actividad temporal, utilizando al monstruo de Gila como sistema de estudio. Además, identificamos si los patrones de actividad están relacionados con restricciones fisiológicas. Usamos registros de presencia provenientes de colecciones científicas y de ciencia ciudadana para generar y probar modelos de nichos ecológicos usando elipsoides de volumen mínimo. Generamos datos microclimáticos para cada hora en cada sitio de presencia durante diez años utilizando el paquete NicheMapR. Para el modelado de nichos ecológicos, comparamos el enfoque estacional tradicional con una estrategia de patrón de actividad diaria para la construcción del nicho. Ambos enfoques fueron probados utilizando la tasa de omisión de observaciones independientes (provenientes de datos de ciencia ciudadana). Finalmente, probamos si los patrones de actividad unimodales y bimodales para cada estación podían recrearse a través de modelos de nichos ecológicos y si estos patrones seguían restricciones fisiológicas conocidas. Los patrones de actividad unimodal y bimodal previamente informados directamente del seguimiento de individuos a lo largo del año, sí se recuperaron mediante el uso de modelos de nicho y microclimas en todo el rango geográfico de la especie. Encontramos también que las tolerancias térmicas superiores pueden explicar los patrones de actividad diaria de esta especie. Concluimos que los modelos de nichos ecológicos entrenados con datos microclimáticos pueden usarse para predecir patrones de actividad en altas resoluciones temporales, particularmente en especies ectotermas de zonas áridas que se enfrentan a modificaciones climáticas rápidas. Además, consideramos que el uso de variables con alta resolución temporal puede conducir a una mejor delimitación de nichos, mejorando los resultados de cualquier objetivo de investigación que utilice estos modelos correlativos.


Assuntos
Ecossistema , Microclima , Animais , Humanos , Vertebrados , Modelos Teóricos , Geografia
9.
Int J Biometeorol ; 66(11): 2259-2271, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36074272

RESUMO

The edge effect, triggered by habitat fragmentation, alters forest microclimates and influences the life cycle of plants. Phenology may indicate the first changes in phenological patterns in response to the effects of climate change. Climate regulates the phenology of ferns and climatic triggers influence plants in tropical and subtropical regions differently. This study analyzed and compared the phenology of fern communities of three sub-areas - natural edge, artificial edge, and forest interior - of a fragment of Araucaria Forest in the Floresta Nacional de São Francisco de Paula, Rio Grande do Sul, Brazil, and its relationship with meteorological, astronomical, and edaphic variables. Abiotic and edaphic data were monitored concomitantly with phenological data (leaf renewal and senescence and sporangia formation) in each sub-area over a biennium. Temperature, air humidity, and soil moisture, which undergo changes with the edge effect, influenced edge plants. Leaf renewal was the main phenophase showing strong indication of changes in vegetative patterns in natural and artificial edge communities. Among the communities, that of the artificial edge signaled phenological changes that could compromise the development of ferns if effects intensify over time. In this respect, the phenology of artificial edge ferns differed from that of plants growing in originally natural formations (natural edge and forest interior), showing that exogenous transformations represent a new environmental situation for ferns to develop.


Assuntos
Araucaria , Gleiquênias , Florestas , Ecossistema , Microclima , Estações do Ano
10.
An Acad Bras Cienc ; 94(3): e20210226, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35857961

RESUMO

In this study, we aimed to assess the spatial variability of microclimate inside a closed compost-bedded pack barn (CBP) with a negative ventilation system during summer and winter. The research was carried out in a CBP located in the Zona da Mata region, Minas Gerais, Brazil. For each of the stations analyzed, the following environmental mean variables observed inside a CBP were measured: air dry-bulb temperature (tdb), air relative humidity (RH), and windspeed, Temperature-Humidity index, and specific enthalpy. The kriging maps showed that the most critical housing conditions in the thermal environment were found, mainly, from the central part of the CBP, close to the exhaust fans. The analyses also pointed out that the system presented temperature gradients along the length, up to 3°C. During the summer afternoon, the entire region of the CBP was in a discomfort situation (tdb>26°C; RH>75%). During the winter, the measured environmental data remained within the comfort zone throughout the facility. However, probably due to the lack of thermal insulation of the material used to close the sides of the CBP, it did not allow spatial thermal uniformity for both seasons. It was also inefficient to keep the animals within the comfort zone for lactating cattle during the critical summer period.


Assuntos
Compostagem , Indústria de Laticínios , Animais , Bovinos , Feminino , Abrigo para Animais , Umidade , Lactação , Microclima , Estações do Ano , Análise Espacial , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA