Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Exp Neurol ; 380: 114924, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39147260

RESUMO

Parkinson's disease (PD) involves the degeneration of dopaminergic neurons in the substantia nigra (SNpc) and manifests with both classic and non-classic motor symptoms, including respiratory failure. Our study aims to investigate the involvement of the commissural and intermediate nucleus of the solitary tract (cNTS and iNTS) in the attenuated respiratory response to hypoxia in PD. Using a PD rat model induced by bilateral injection of 6-hydroxydopamine (6-OHDA) into the striatum of male Wistar rats, we explored potential alterations in the population of Phox2b neurons or hypoxia-activated neurons in the NTS projecting to the retrotrapezoid nucleus (RTN). Additionally, we explored neuronal connectivity between SNpc and cNTS. Projections pathways were assessed using unilateral injection of the retrograde tracer Fluorogold (FG) in the cNTS and RTN. Neuronal activation was evaluated by analyzing fos expression in rats exposed to hypoxia. In the PD model, the ventilatory response, measured through whole-body plethysmography, was impaired at both baseline and in response to hypoxia. A reduction in Phox2b-expressing neurons or hypoxia-activated neurons projecting to the RTN was observed. Additionally, we identified an indirect pathway linking the SNpc and cNTS, which passes through the periaqueductal gray (PAG). In conclusion, our findings suggest impairment in the SNpc-PAG-cNTS pathway in the PD model, explaining the loss of Phox2b-expressing neurons or hypoxia-activated neurons in the cNTS and subsequent respiratory impairment during hypoxic stimulation. We propose that the reduced population of Phox2b-expressing neurons in the NTS may include the same neurons activated by hypoxia and projecting to the RTN.


Assuntos
Hipóxia , Oxidopamina , Ratos Wistar , Núcleo Solitário , Animais , Masculino , Ratos , Núcleo Solitário/patologia , Hipóxia/patologia , Oxidopamina/toxicidade , Proteínas de Homeodomínio/metabolismo , Modelos Animais de Doenças , Degeneração Neural/patologia , Neurônios/patologia , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/fisiopatologia , Fatores de Transcrição/metabolismo
2.
Sci Rep ; 14(1): 4069, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374419

RESUMO

We investigated the participation of the nucleus of the tractus solitarius (NTS) in tonic‒clonic seizures and postictal antinociception control mediated by NMDA receptors, the role of NTS GABAergic interneurons and noradrenergic pathways from the locus coeruleus (LC) in these phenomena. The NTS-lateral nucleus reticularis paragigantocellularis (lPGi)-LC pathway was studied by evaluating neural tract tracer deposits in the lPGi. NMDA and GABAergic receptors agonists and antagonists were microinjected into the NTS, followed by pharmacologically induced seizures. The effects of LC neurotoxic lesions caused by DSP-4, followed by NTS-NMDA receptor activation, on both tonic‒clonic seizures and postictal antinociception were also investigated. The NTS is connected to lPGi neurons that send outputs to the LC. Glutamatergic vesicles were found on dendrites and perikarya of GABAergic interneurons in the NTS. Both tonic‒clonic seizures and postictal antinociception are partially dependent on glutamatergic-mediated neurotransmission in the NTS of seizing rats in addition to the integrity of the noradrenergic system since NMDA receptor blockade in the NTS and intrathecal administration of DSP-4 decrease the postictal antinociception. The GABAA receptor activation in the NTS decreases both seizure severity and postictal antinociception. These findings suggest that glutamatergic inputs to NTS-GABAergic interneurons, in addition to ascending and descending noradrenergic pathways from the LC, are critical for the control of both seizures and postictal antinociception.


Assuntos
Benzilaminas , Locus Cerúleo , Receptores de N-Metil-D-Aspartato , Ratos , Animais , Locus Cerúleo/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Bulbo/metabolismo , Núcleo Solitário/metabolismo , Norepinefrina/metabolismo , Convulsões/metabolismo
3.
Neuroscience ; 536: 57-71, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37979842

RESUMO

The first synapses of the afferents of peripheral chemoreceptors are located in the Nucleus Tractus Solitarius (NTS) and there is evidence that short-term sustained hypoxia (SH - 24 h, FiO2 0.1) facilitates glutamatergic transmission in NTS neurons of rats. Adenosine is an important neuromodulator of synaptic transmission and hypoxia contributes to increase its extracellular concentration. The A2A receptors mediate the excitatory actions of adenosine and are active players in the modulation of neuronal networks in the NTS. Herein, we used knockout mice for A2A receptors (A2AKO) and electrophysiological recordings of NTS neurons were performed to evaluate the contribution of these receptors in the changes in synaptic transmission in NTS neurons of mice submitted to SH. The membrane passive properties and excitability of NTS neurons were not affected by SH and were similar between A2AKO and wild-type mice. The overall amplitude of spontaneous glutamatergic currents in NTS neurons of A2AKO mice was lower than in Balb/c WT mice. SH increased the amplitude of evoked glutamatergic currents of NTS neurons from WT mice by a non-presynaptic mechanism, but this enhancement was not observed in NTS neurons of A2AKO mice. Under normoxia, the amplitude of evoked glutamatergic currents was similar between WT and A2AKO mice. The data indicate that A2A receptors (a) modulate spontaneous glutamatergic currents, (b) do not modulate the evoked glutamatergic transmission in the NTS neurons under control conditions, and (c) are required for the enhancement of glutamatergic transmission observed in the NTS neurons of mice submitted to SH.


Assuntos
Neurônios , Núcleo Solitário , Ratos , Camundongos , Animais , Núcleo Solitário/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Hipóxia , Adenosina
4.
Biol Res ; 56(1): 57, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932867

RESUMO

BACKGROUND: Obstructive sleep apnea (OSA) is characterized by recurrent episodes of chronic intermittent hypoxia (CIH), which has been linked to the development of sympathoexcitation and hypertension. Furthermore, it has been shown that CIH induced inflammation and neuronal hyperactivation in the nucleus of the solitary tract (NTS), a key brainstem region involved in sympathetic and cardiovascular regulation. Since several studies have proposed that NTS astrocytes may mediate neuroinflammation, we aimed to determine the potential contribution of NTS-astrocytes on the pathogenesis of CIH-induced hypertension. RESULTS: Twenty-one days of CIH induced autonomic imbalance and hypertension in rats. Notably, acute chemogenetic inhibition (CNO) of medullary NTS astrocytes using Designer Receptors Exclusively Activated by Designers Drugs (DREADD) restored normal cardiac variability (LF/HF: 1.1 ± 0.2 vs. 2.4 ± 0.2 vs. 1.4 ± 0.3, Sham vs. CIH vs. CIH + CNO, respectively) and markedly reduced arterial blood pressure in rats exposed to CIH (MABP: 82.7 ± 1.2 vs. 104.8 ± 4.4 vs. 89.6 ± 0.9 mmHg, Sham vs. CIH vs. CIH + CNO, respectively). In addition, the potentiated sympathoexcitation elicit by acute hypoxic chemoreflex activation in rats exposed to CIH was also completely abolished by chemogenetic inhibition of NTS astrocytes using DREADDs. CONCLUSION: Our results support a role for NTS astrocytes in the maintenance of heightened sympathetic drive and hypertension during chronic exposure to intermittent hypoxia mimicking OSA.


Assuntos
Hipertensão , Apneia Obstrutiva do Sono , Ratos , Animais , Núcleo Solitário , Astrócitos , Hipertensão/etiologia , Apneia Obstrutiva do Sono/complicações , Hipóxia
5.
Neuroimmunomodulation ; 30(1): 102-112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37232031

RESUMO

Bioelectronic medicine is a novel field in modern medicine based on the specific neuronal stimulation to control organ function, cardiovascular, and immune homeostasis. However, most studies addressing neuromodulation of the immune system have been conducted on anesthetized animals, which can affect the nervous system and neuromodulation. Here, we review recent studies involving conscious experimental rodents (rats and mice) to better understand the functional organization of neural control of immune homeostasis. We highlight typical experimental models of cardiovascular regulation, such as electrical activation of the aortic depressor nerve or the carotid sinus nerve, bilateral carotid occlusion, the Bezold-Jarisch reflex, and intravenous administration of the bacterial endotoxin lipopolysaccharide. These models have been used to investigate the relationship between neuromodulation of the cardiovascular and immune systems in conscious rodents (rats and mice). These studies provide critical information about the neuromodulation of the immune system, particularly the role of the autonomic nervous system, i.e., the sympathetic and parasympathetic branches acting both centrally (hypothalamus, nucleus ambiguus, nucleus tractus solitarius, caudal ventrolateral medulla, and rostral ventrolateral medulla), and peripherally (particularly spleen and adrenal medulla). Overall, the studies in conscious experimental models have certainly highlighted to the reader how the methodological approaches used to investigate cardiovascular reflexes in conscious rodents (rats and mice) can also be valuable for investigating the neural mechanisms involved in inflammatory responses. The reviewed studies have clinical implications for future therapeutic approaches of bioelectronic modulation of the nervous system to control organ function and physiological homeostasis in conscious physiology.


Assuntos
Inflamação , Núcleo Solitário , Ratos , Camundongos , Animais , Núcleo Solitário/fisiologia , Neurônios , Sistema Nervoso Autônomo , Hipotálamo , Sistema Nervoso Simpático , Frequência Cardíaca/fisiologia , Pressão Sanguínea/fisiologia
6.
Brain Res Bull ; 195: 109-119, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813046

RESUMO

Metabolic programming may be induced by reduction or enhancement of litter size, which lead to neonatal over or undernutrition, respectively. Changes in neonatal nutrition can challenge some regulatory processes in adulthood, such as the hypophagic effect of cholecystokinin (CCK). In order to investigate the effects of nutritional programming on the anorexigenic function of CCK in adulthood, pups were raised in small (SL, 3 pups per dam), normal (NL, 10 pups per dam), or large litters (LL, 16 pups per dam), and on postnatal day 60, male rats were treated with vehicle or CCK (10 µg/Kg) for the evaluation of food intake and c-Fos expression in the area postrema (AP), nucleus of solitary tract (NTS), and paraventricular (PVN), arcuate (ARC), ventromedial (VMH), and dorsomedial (DMH) nuclei of the hypothalamus. Overnourished rats showed increased body weight gain that was inversely correlated with neuronal activation of PaPo, VMH, and DMH neurons, whereas undernourished rats had lower body weight gain, inversely correlated with increased neuronal activation of PaPo only. SL rats showed no anorexigenic response and lower neuron activation in the NTS and PVN induced by CCK. LL exhibited preserved hypophagia and neuron activation in the AP, NTS, and PVN in response to CCK. CCK showed no effect in c-Fos immunoreactivity in the ARC, VMH, and DMH in any litter. These results indicate that anorexigenic actions, associated with neuron activation in the NTS and PVN, induced by CCK were impaired by neonatal overnutrition. However, these responses were not disrupted by neonatal undernutrition. Thus, data suggest that an excess or poor supply of nutrients during lactation display divergent effects on programming CCK satiation signaling in male adult rats.


Assuntos
Desnutrição , Hipernutrição , Ratos , Masculino , Animais , Núcleo Hipotalâmico Paraventricular/metabolismo , Colecistocinina/farmacologia , Colecistocinina/metabolismo , Ratos Wistar , Núcleo Solitário/metabolismo , Ratos Sprague-Dawley , Hipotálamo/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Hipernutrição/metabolismo , Peso Corporal , Ingestão de Alimentos
7.
Brain Res ; 1791: 147995, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35779583

RESUMO

Growth hormone (GH)-responsive neurons regulate several homeostatic behaviors including metabolism, energy balance, arousal, and stress response. Therefore, it is possible that GH-responsive neurons play a role in other responses such as CO2/H+-dependent breathing behaviors. Here, we investigated whether central GH receptor (GHR) modulates respiratory activity in conscious unrestrained mice. First, we detected clusters of GH-responsive neurons in the tyrosine hydroxylase-expressing cells in the rostroventrolateral medulla (C1 region) and within the locus coeruleus (LC). No significant expression was detected in phox2b-expressing cells in the retrotrapezoid nucleus. Whole body plethysmography revealed a reduction in the tachypneic response to hypoxia (FiO2 = 0.08) without changing baseline breathing and the hypercapnic ventilatory response. Contrary to the physiological findings, we did not find significant differences in the number of fos-activated cells in the nucleus of the solitary tract (NTS), C1, LC and paraventricular nucleus of the hypothalamus (PVH). Our finding suggests a possible secondary role of central GH action in the tachypneic response to hypoxia in conscious mice.


Assuntos
Hipercapnia , Núcleo Solitário , Animais , Hormônio do Crescimento/metabolismo , Hipotálamo/metabolismo , Hipóxia/metabolismo , Camundongos , Núcleo Solitário/metabolismo
8.
Medicina (Kaunas) ; 58(4)2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35454388

RESUMO

Background and Objectives: The commissural nucleus of the tractus solitarius (cNTS) not only responds to glucose levels directly, but also receives afferent signals from the liver, and from the carotid chemoreceptors (CChR). In addition, leptin, through its receptors in the cNTS, regulates food intake, body weight, blood glucose levels, and brain glucose retention (BGR). These leptin effects on cNTS are thought to be mediated through the sympathetic-adrenal system. How these different sources of information converging in the NTS regulate blood glucose levels and brain glucose retention remains largely unknown. The goal of the present study was to determine whether the local administration of leptin in cNTS alone, or after local anoxic stimulation using sodium cyanide (NaCN) in the carotid sinus, modifies the expression of leptin Ob-Rb and of c-Fos mRNA. We also investigated how leptin, alone, or in combination with carotid sinus stimulation, affected brain glucose retention. Materials and Methods: The experiments were carried out in anesthetized male Wistar rats artificially ventilated to maintain homeostatic values for pO2, pCO2, and pH. We had four groups: (a) experimental 1, leptin infusion in cNTS and NaCN in the isolated carotid sinus (ICS; n = 10); (b) experimental 2, leptin infusion in cNTS and saline in the ICS (n = 10); (c) control 1, artificial cerebrospinal fluid (aCSF) in cNTS and NaCN in the ICS (n = 10); (d) control 2, aCSF in cNTS and saline in the ICS (n = 10). Results: Leptin in cNTS, preceded by NaCN in the ICS increased BGR and leptin Ob-Rb mRNA receptor expression, with no significant increases in c-Fos mRNA in the NTSc. Conclusions: Leptin in the cNTS enhances brain glucose retention induced by an anoxic stimulus in the carotid chemoreceptors, through an increase in Ob-Rb receptors, without persistent changes in neuronal activation.


Assuntos
Corpo Carotídeo , Leptina , Receptores para Leptina , Núcleo Solitário , Animais , Glicemia/metabolismo , Corpo Carotídeo/metabolismo , Glucose/metabolismo , Hipóxia , Leptina/metabolismo , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores para Leptina/metabolismo , Núcleo Solitário/metabolismo
9.
Arq Bras Cardiol ; 117(2): 290-297, 2021 08.
Artigo em Inglês, Português | MEDLINE | ID: mdl-34495221

RESUMO

BACKGROUND: Nucleus tractus solitarius (NTS) is a brain area that plays a key role in kidney and cardiovascular regulation via baroreceptors impulses. OBJECTIVES: The aim of this study was to evaluate the effect of naringin (NAR) and trimetazidine (TMZ) alone and their combination on NTS electrical activity and baroreceptor sensitivity (BRS) in renal ischemia- reperfusion (I/R) injury. METHODS: Forty male Sprague-Dawley rats (200- 250 g) were allocated into 5 groups with 8 in each. 1) Sham; 2) I/R; 3) TMZ 5 mg/kg; 4) NAR 100 mg/kg; and 5) TMZ5+ NAR100. The left femoral vein was cannulated to infuse saline solution or drug and the BRS was evaluated. I/R was induced by occlusion of renal pedicles for 45 min, followed by 4 hours of reperfusion. The NTS local electroencephalogram (EEG) was recorded before, during ischemia and throughout the reperfusion. Phenylephrine was injected intravenously to evaluate BRS at the end of reperfusion time. The data were analyzed by two-way repeated measurement ANOVA followed by Tukey's post hoc test. A p-value <0.05 was considered significant. RESULTS: NTS electrical waves did not change during ischemia time, while they significantly decreased during the entire reperfusion time. NTS electrical activity and BRS dramatically reduced in rats with I/R injury; however, administration of NAR, TMZ alone or their combination significantly improved these changes in rats with I/R injury. CONCLUSIONS: The results showed that I/R injury leads to reduced BRS and NTS electrical activity and there may be an association between I/R and decreased BRS. In addition, NAR and TMZ are promising agents to treat I/R complications.


FUNDAMENTO: O núcleo do trato solitário (NTS) é uma área do cérebro que desempenha um papel fundamental na regulação renal e cardiovascular através dos impulsos dos barorreceptores. OBJETIVOS: O objetivo deste estudo foi avaliar o efeito da Naringina (NAR) e trimetazidina (TMZ), isoladamente e combinadas, na atividade elétrica do NTS e na sensibilidade barorreflexa (SBR) na lesão de isquemia e reperfusão (I/R) renal. MÉTODOS: Foram utilizados quarenta ratos machos Sprague-Dawley (200-250 g), alocados em 5 grupos com 8 ratos cada. Grupos: 1) Sham; 2) I/R; 3) TMZ 5 mg/kg; 4) NAR 100 mg/kg; e 5) TMZ5 + NAR100. A veia femoral esquerda foi canulada para infundir a solução salina ou droga e avaliar a SBR. A I/R foi induzida por oclusão dos pedículos renais por 45 min, seguida de reperfusão de 4 horas. O eletroencefalograma local do NTS foi registrado antes, durante a isquemia e durante a reperfusão. A fenilefrina foi injetada por via intravenosa para avaliar a SBR ao final do tempo de reperfusão. Os dados foram analisados por ANOVA de duas vias com medidas repetidas seguida pelo teste post hoc de Tukey. Um valor de p<0,05 foi considerado como significativo. RESULTADOS: As ondas elétricas do NTS não se alteraram durante o tempo de isquemia, mas diminuíram significativamente durante todos os tempos de reperfusão. A atividade elétrica do NTS e a SBR foram reduzidas drasticamente em ratos com lesão I/R; no entanto, a administração de NAR e TMZ, isoladamente e combinadas, melhorou significativamente essas alterações em ratos com lesão I/R. CONCLUSÕES: Os resultados mostraram que a lesão de I/R leva à redução da atividade elétrica da SBR e do NTS, e pode haver uma ligação entre a I/R e a diminuição da SBR. Além disso, a NAR e a TMZ são agentes promissores para tratar complicações de I/R.


Assuntos
Traumatismo por Reperfusão , Trimetazidina , Animais , Barorreflexo , Flavanonas , Rim , Masculino , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Núcleo Solitário , Trimetazidina/farmacologia
10.
Arq. bras. cardiol ; 117(2): 290-297, ago. 2021. tab, graf
Artigo em Inglês, Português | LILACS | ID: biblio-1339163

RESUMO

Resumo Fundamento: O núcleo do trato solitário (NTS) é uma área do cérebro que desempenha um papel fundamental na regulação renal e cardiovascular através dos impulsos dos barorreceptores. Objetivos: O objetivo deste estudo foi avaliar o efeito da Naringina (NAR) e trimetazidina (TMZ), isoladamente e combinadas, na atividade elétrica do NTS e na sensibilidade barorreflexa (SBR) na lesão de isquemia e reperfusão (I/R) renal. Métodos: Foram utilizados quarenta ratos machos Sprague-Dawley (200-250 g), alocados em 5 grupos com 8 ratos cada. Grupos: 1) Sham; 2) I/R; 3) TMZ 5 mg/kg; 4) NAR 100 mg/kg; e 5) TMZ5 + NAR100. A veia femoral esquerda foi canulada para infundir a solução salina ou droga e avaliar a SBR. A I/R foi induzida por oclusão dos pedículos renais por 45 min, seguida de reperfusão de 4 horas. O eletroencefalograma local do NTS foi registrado antes, durante a isquemia e durante a reperfusão. A fenilefrina foi injetada por via intravenosa para avaliar a SBR ao final do tempo de reperfusão. Os dados foram analisados por ANOVA de duas vias com medidas repetidas seguida pelo teste post hoc de Tukey. Um valor de p<0,05 foi considerado como significativo. Resultados: As ondas elétricas do NTS não se alteraram durante o tempo de isquemia, mas diminuíram significativamente durante todos os tempos de reperfusão. A atividade elétrica do NTS e a SBR foram reduzidas drasticamente em ratos com lesão I/R; no entanto, a administração de NAR e TMZ, isoladamente e combinadas, melhorou significativamente essas alterações em ratos com lesão I/R. Conclusões: Os resultados mostraram que a lesão de I/R leva à redução da atividade elétrica da SBR e do NTS, e pode haver uma ligação entre a I/R e a diminuição da SBR. Além disso, a NAR e a TMZ são agentes promissores para tratar complicações de I/R.


Abstract Background: Nucleus tractus solitarius (NTS) is a brain area that plays a key role in kidney and cardiovascular regulation via baroreceptors impulses. Objectives: The aim of this study was to evaluate the effect of naringin (NAR) and trimetazidine (TMZ) alone and their combination on NTS electrical activity and baroreceptor sensitivity (BRS) in renal ischemia- reperfusion (I/R) injury. Methods: Forty male Sprague-Dawley rats (200- 250 g) were allocated into 5 groups with 8 in each. 1) Sham; 2) I/R; 3) TMZ 5 mg/kg; 4) NAR 100 mg/kg; and 5) TMZ5+ NAR100. The left femoral vein was cannulated to infuse saline solution or drug and the BRS was evaluated. I/R was induced by occlusion of renal pedicles for 45 min, followed by 4 hours of reperfusion. The NTS local electroencephalogram (EEG) was recorded before, during ischemia and throughout the reperfusion. Phenylephrine was injected intravenously to evaluate BRS at the end of reperfusion time. The data were analyzed by two-way repeated measurement ANOVA followed by Tukey's post hoc test. A p-value <0.05 was considered significant. Results: NTS electrical waves did not change during ischemia time, while they significantly decreased during the entire reperfusion time. NTS electrical activity and BRS dramatically reduced in rats with I/R injury; however, administration of NAR, TMZ alone or their combination significantly improved these changes in rats with I/R injury. Conclusions: The results showed that I/R injury leads to reduced BRS and NTS electrical activity and there may be an association between I/R and decreased BRS. In addition, NAR and TMZ are promising agents to treat I/R complications.


Assuntos
Animais , Masculino , Ratos , Trimetazidina/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/tratamento farmacológico , Ratos Sprague-Dawley , Núcleo Solitário , Barorreflexo , Flavanonas , Rim
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA