Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1769: 147582, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34314729

RESUMO

Inflammation has been associated with cardiovascular diseases and the key point is the generation of reactive oxygen species (ROS). Exercise modulates medullary neurons involved in cardiovascular control. We investigated the effect of chronic exercise training (Tr) in treadmill running on gene expression (GE) of ROS and inflammation in commNTS and RVLM neurons. Male Wistar rats (N = 7/group) were submitted to training in a treadmill running (1 h/day, 5 days/wk/10 wks) or maintained sedentary (Sed). Superoxide dismutase (SOD), catalase (CAT), neuroglobin (Ngb), Cytoglobin (Ctb), NADPH oxidase (Nox), cicloxigenase-2 (Cox-2), and neuronal nitric oxide synthase (NOS1) gene expression were evaluated in commNTS and RVLM neurons by qPCR. In RVLM, Tr rats increased Ngb (1.285 ± 0.03 vs. 0.995 ± 0.06), Cygb (1.18 ± 0.02 vs.0.99 ± 0.06), SOD (1.426 ± 0.108 vs. 1.00 ± 0.08), CAT (1.34 ± 0.09 vs. 1.00 ± 0.08); and decreased Nox (0.55 ± 0.146 vs. 1.001 ± 0.08), Cox-2 (0.335 ± 0.05 vs. 1.245 ± 0.02), NOS1 (0.51 ± 0.08 vs. 1.08 ± 0.209) GE compared to Sed. In commNTS, Tr rats increased SOD (1.384 ± 0.13 vs. 0.897 ± 0.101), CAT GE (1.312 ± 0.126 vs. 0.891 ± 0.106) and decreased Cox-2 (0.052 ± 0.011 vs. 1.06 ± 0.207) and NOS1 (0.1550 ± 0.03559 vs. 1.122 ± 0.26) GE compared to Sed. Therefore, GE of proteins of the inflammatory process reduced while GE of antioxidant proteins increased in the commNTS and RVLM after training, suggesting a decrease in oxidative stress of downstream pathways mediated by nitric oxide.


Assuntos
Encefalite/fisiopatologia , Bulbo/fisiopatologia , Estresse Oxidativo , Condicionamento Físico Animal/fisiologia , Núcleo Solitário/fisiopatologia , Animais , Antioxidantes/metabolismo , Encefalite/genética , Expressão Gênica , Masculino , Bulbo/metabolismo , Estresse Oxidativo/genética , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Comportamento Sedentário , Núcleo Solitário/metabolismo
2.
Pflugers Arch ; 472(1): 49-60, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31884528

RESUMO

The nucleus of the solitary tract (NTS) is an important area of the brainstem that receives and integrates afferent cardiorespiratory sensorial information, including those from arterial chemoreceptors and baroreceptors. It was described that acetylcholine (ACh) in the commissural subnucleus of the NTS (cNTS) promotes an increase in the phrenic nerve activity (PNA) and antagonism of nicotinic receptors in the same region reduces the magnitude of tachypneic response to peripheral chemoreceptor stimulation, suggesting a functional role of cholinergic transmission within the cNTS in the chemosensory control of respiratory activity. In the present study, we investigated whether cholinergic receptor antagonism in the cNTS modifies the sympathetic and respiratory reflex responses to hypercapnia. Using an arterially perfused in situ preparation of juvenile male Holtzman rats, we found that the nicotinic antagonist (mecamylamine, 5 mM), but not the muscarinic antagonist (atropine, 5 mM), into the cNTS attenuated the hypercapnia-induced increase of hypoglossal activity. Furthermore, mecamylamine in the cNTS potentiated the generation of late-expiratory (late-E) activity in abdominal nerve induced by hypercapnia. None of the cholinergic antagonists microinjected in the cNTS changed either the sympathetic or the phrenic nerve responses to hypercapnia. Our data provide evidence for the role of cholinergic transmission in the cNTS, acting on nicotinic receptors, modulating the hypoglossal and abdominal responses to hypercapnia.


Assuntos
Neurônios Colinérgicos/fisiologia , Hipercapnia/metabolismo , Respiração , Transmissão Sináptica , Comissuras Telencefálicas/fisiologia , Animais , Atropina/farmacologia , Neurônios Colinérgicos/efeitos dos fármacos , Hipercapnia/fisiopatologia , Nervo Hipoglosso/fisiologia , Masculino , Mecamilamina/farmacologia , Agonistas Muscarínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Nervo Frênico/fisiologia , Ratos , Receptores Colinérgicos/metabolismo , Reflexo , Núcleo Solitário/fisiologia , Núcleo Solitário/fisiopatologia , Comissuras Telencefálicas/fisiopatologia
3.
J Neuroinflammation ; 16(1): 125, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221164

RESUMO

BACKGROUND: Lipopolysaccharide (LPS)-induced systemic inflammation (SI) is associated with neuroinflammation in the brain, hypotension, tachycardia, and multiple organs dysfunctions. Considering that during SI these important cardiovascular and inflammatory changes take place, we measured the sensitivity of the cardiovascular reflexes baroreflex, chemoreflex, and Bezold-Jarisch that are key regulators of hemodynamic function. We also evaluated neuroinflammation in the nucleus tractus solitarius (NTS), the first synaptic station that integrates peripheral signals arising from the cardiovascular and inflammatory status. METHODS: We combined cardiovascular recordings, immunofluorescence, and assays of inflammatory markers in male Wistar rats that receive iv administration of LPS (1.5 or 2.5 mg kg-1) to investigate putative interactions of the neuroinflammation in the NTS and in the anteroventral preoptic region of the hypothalamus (AVPO) with the short-term regulation of blood pressure and heart rate. RESULTS: LPS induced hypotension, tachycardia, autonomic disbalance, hypothermia followed by fever, and reduction in spontaneous baroreflex gain. On the other hand, during SI, the bradycardic component of Bezold-Jarisch and chemoreflex activation was increased. These changes were associated with a higher number of activated microglia and interleukin (IL)-1ß levels in the NTS. CONCLUSIONS: The present data are consistent with the notion that during SI and neuroinflammation in the NTS, rats have a reduced baroreflex gain, combined with an enhancement of the bradycardic component of Bezold-Jarisch and chemoreflex despite the important cardiovascular impairments (hypotension and tachycardia). These changes in the cardiac component of Bezold-Jarisch and chemoreflex may be beneficial during SI and indicate that the improvement of theses reflexes responsiveness though specific nerve stimulations may be useful in the management of sepsis.


Assuntos
Hemodinâmica/fisiologia , Inflamação/fisiopatologia , Núcleo Solitário/fisiopatologia , Animais , Hemodinâmica/efeitos dos fármacos , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Masculino , Ratos , Ratos Wistar , Núcleo Solitário/efeitos dos fármacos
4.
J Neurophysiol ; 121(5): 1822-1830, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30892977

RESUMO

Sustained hypoxia (SH) activates chemoreceptors to produce cardiovascular and respiratory responses to bring the arterial partial pressure of O2 back to the physiological range. We evaluated the effect of SH (fraction of inspired O2 = 0.10, 24 h) on glutamatergic synaptic transmission and the interaction neuron-astrocyte in neurons of the nucleus tractus solitarii (NTS). Tractus solitarius (TS) fiber stimulation induced glutamatergic currents in neurons and astrocytes. SH increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate (AMPA/kainate) [-183 ± 122 pA (n = 10) vs. -353 ± 101 pA (n = 10)] and N-methyl-d-aspartate (NMDA) current amplitude [61 ± 10 pA (n = 7) vs. 102 ± 37 pA (n = 10)]. To investigate the effects of SH, we used fluoroacetate (FAC), an astrocytic inhibitor, which revealed an excitatory modulation on AMPA/kainate current and an inhibitory modulation of NMDA current in control rats. SH blunted the astrocytic modulation of AMPA [artificial cerebrospinal fluid (aCSF): -353 ± 101 pA vs. aCSF + FAC: -369 ± 76 pA (n = 10)] and NMDA currents [aCSF: 102 ± 37 pA vs. aCSF + FAC: 108 ± 32 pA (n = 10)]. SH increased AMPA current density [control: -6 ± 3.5 pA/pF (n = 6) vs. SH: -20 ± 12 pA/pF (n = 7)], suggesting changes in density, conductance, or affinity of AMPA receptors. SH produced no effect on astrocytic resting membrane potential, input resistance, and AMPA/kainate current. We conclude that SH decreased the neuron-astrocyte interaction at the NTS level, facilitating the glutamatergic transmission, which may contribute to the enhancement of cardiovascular and respiratory responses to baro- and chemoreflexes activation in SH rats. NEW & NOTEWORTHY Using an electrophysiological approach, we have shown that in nucleus tractus solitarii (NTS) from control rats, astrocytes modulate the AMPA and NMDA currents in NTS neurons, changing their excitability. Sustained hypoxia (SH) increased both glutamatergic currents in NTS neurons due to 1) a reduction in the astrocytic modulation and 2) an increase in the density of AMPA receptors. These new findings show the importance of neuron-astrocyte modulation in the excitatory synaptic transmission in NTS of control and SH rats.


Assuntos
Astrócitos/metabolismo , Ácido Glutâmico/farmacologia , Hipóxia/fisiopatologia , Núcleo Solitário/fisiopatologia , Transmissão Sináptica , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/fisiologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Fluoracetatos/farmacologia , Hipóxia/metabolismo , Ácido Caínico/farmacologia , Masculino , Potenciais da Membrana , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos Wistar , Núcleo Solitário/metabolismo
5.
Exp Physiol ; 103(10): 1377-1389, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30070746

RESUMO

NEW FINDINGS: What is the central question of this study? What is the relationship between neuroanatomical and functional respiratory changes in an experimental model of Parkinson's disease? What is the main finding and its importance? Sixty days after induction of Parkinson's disease in a rat model, there are decreases in baseline breathing and in the number of neurons, density of the neurokinin-1 receptor and density of astrocytes in the ventrolateral respiratory region. These results provide the first evidence that neuroanatomical changes occur before functional respiratory deficits in a Parkinson's disease model and that there is a positive correlation between those sets of changes. The neuroanatomical changes impair respiratory activity and are presumably a major cause of the respiratory problems observed in Parkinson's disease. ABSTRACT: We showed previously that 60 days after the induction of Parkinson's disease (PD) in a rat model, there are decreases in baseline breathing and in the number of phox2b-expressing neurons of the retrotrapezoid nucleus (RTN) and nucleus of the solitary tract (NTS), as well as a reduction in the density of the neurokinin-1 receptor (NK1r) in the pre-Bötzinger complex (preBötC) and rostral ventrolateral respiratory group (rVRG). Here, our aim was to evaluate the correlation between neuroanatomical and functional respiratory changes in an experimental model of PD. Male Wistar rats with bilateral injections of 6-hydroxydopamine (6-OHDA, 24 µg µl-1 ) or vehicle into the striatum had respiratory parameters assessed by whole-body plethysmography 1 day before and 30, 40 or 60 days after the ablation. From the 30th day after the ablation, we observed a reduction in the number of phox2b neurons in the RTN and NTS and a reduction in the density of astrocytes in the rVRG. At 40 days after the ablation, we observed decreases in the density of NK1r in the preBötC and rVRG and of astrocytes in the RTN region. At 60 days, we observed a reduction in the density of astrocytes in the NTS and preBötC regions. The functional data showed changes in the resting and hypercapnia-induced respiratory rates and tidal volume from days 40-60 after injury. Our data suggest that the neuroanatomical changes impair respiratory activity and are presumably a major cause of the respiratory problems observed in PD.


Assuntos
Neurônios/patologia , Doença de Parkinson/fisiopatologia , Centro Respiratório/fisiopatologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Proteínas de Homeodomínio/metabolismo , Hipercapnia/metabolismo , Hipercapnia/fisiopatologia , Masculino , Modelos Teóricos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxidopamina/administração & dosagem , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Ratos , Ratos Wistar , Receptores da Neurocinina-1/metabolismo , Respiração/efeitos dos fármacos , Centro Respiratório/efeitos dos fármacos , Centro Respiratório/metabolismo , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/metabolismo , Núcleo Solitário/fisiopatologia , Fatores de Transcrição/metabolismo
6.
Can J Physiol Pharmacol ; 95(2): 157-162, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27901369

RESUMO

Spontaneously hypertensive rats (SHR) display autonomic imbalance and abnormal body temperature (Tb) adjustments. Hydrogen sulfide (H2S) modulates hypoxia-induced hypothermia, but its role in SHR thermoregulation is unknown. We tested the hypothesis that SHR display peculiar thermoregulatory response to hypoxia and that endogenous H2S overproduced in the caudal nucleus of the solitary tract (NTS) of SHR modulates this response. SHR and Wistar rats were microinjected into the fourth ventricle with aminooxyacetate (AOA, H2S-synthezing enzyme inhibitor) or sodium sulfide (Na2S, H2S donor) and exposed to normoxia (21% inspired O2) or hypoxia (10% inspired O2, 30 min). Tb was continuously measured, and H2S production rate was assessed in caudal NTS homogenates. In both groups, AOA, Na2S, or saline (i.e., control; 1 µL) did not affect euthermia. Hypoxia caused similar decreases in Tb in both groups. AOA presented a longer latency to potentiate hypoxic hypothermia in SHR. Caudal NTS H2S production rate was higher in SHR. We suggest that increased bioavailability of H2S in the caudal NTS of SHR enables the adequate modulation of excitability of peripheral chemoreceptor-activated NTS neurons that ultimately induce suppression of brown adipose tissue thermogenesis, thus accounting for the normal hypoxic hypothermia.


Assuntos
Regulação da Temperatura Corporal , Sulfeto de Hidrogênio/metabolismo , Hipotermia Induzida , Hipóxia/fisiopatologia , Ácido Amino-Oxiacético/administração & dosagem , Ácido Amino-Oxiacético/farmacologia , Animais , Temperatura Corporal/efeitos dos fármacos , Hipóxia/complicações , Masculino , Microinjeções , Ratos , Ratos Endogâmicos SHR , Núcleo Solitário/metabolismo , Núcleo Solitário/fisiopatologia , Sulfetos/administração & dosagem , Sulfetos/farmacologia
7.
Neuroscience ; 324: 446-68, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27001176

RESUMO

This study was designed to investigate brain connections among chemosensitive areas in newborn rats. Rhodamine beads were injected unilaterally into the locus coeruleus (LC) or into the caudal part of the nucleus tractus solitarius (cNTS) in Sprague-Dawley rat pups (P7-P10). Rhodamine-labeled neurons were patched in brainstem slices to study their electrophysiological responses to hypercapnia and to determine if chemosensitive neurons are communicating between LC and cNTS regions. After 7-10 days, retrograde labeling was observed in numerous areas of the brainstem, including many chemosensitive regions, such as the contralateral LC, cNTS and medullary raphe. Whole-cell patch clamp was done in cNTS. In 4 of 5 retrogradely labeled cNTS neurons that projected to the LC, firing rate increased in response to hypercapnic acidosis (15% CO2), even in synaptic blockade medium (SNB) (high Mg(2+)/low Ca(2+)). In contrast, 2 of 3 retrogradely labeled LC neurons that projected to cNTS had reduced firing rate in response to hypercapnic acidosis, both in the presence and absence of SNB. Extensive anatomical connections among chemosensitive brainstem regions in newborn rats were found and at least for the LC and cNTS, the connections involve some CO2-sensitive neurons. Such anatomical and functional coupling suggests a complex central respiratory control network, such as seen in adult rats, is already largely present in neonatal rats by at least day P7-P10. Since the NTS and the LC play a major role in memory consolidation, our results may also contribute to the understanding of the development of memory consolidation.


Assuntos
Locus Cerúleo/citologia , Locus Cerúleo/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Núcleo Solitário/citologia , Núcleo Solitário/fisiopatologia , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Dióxido de Carbono/metabolismo , Contagem de Células , Feminino , Locus Cerúleo/crescimento & desenvolvimento , Masculino , Memória , Microscopia Confocal , Vias Neurais/citologia , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico , Técnicas de Patch-Clamp , Ratos Sprague-Dawley , Respiração , Núcleo Solitário/crescimento & desenvolvimento , Técnicas de Cultura de Tecidos
8.
Neurosci Lett ; 521(1): 31-6, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22634629

RESUMO

Electrolytic lesions of the commissural nucleus of the solitary tract (commNTS) in rats enhance the pressor response to bilateral carotid occlusion or to intravenous infusion of hypertonic NaCl without changing baroreflex responses. In an opposite direction, commNTS lesions abolish the pressor responses to peripheral chemoreflex activation. These opposite effects of commNTS lesions apparently result from an impairment of sympathetic activation in one case and in a facilitation of vasopressin secretion in the others. In the present study, we investigated the effects of the electrolytic lesions of the commNTS in the pressor responses that depend on sympathetic activation and vasopressin secretion produced by central cholinergic or adrenergic activation with intracerebroventricular (i.c.v.) injections of carbachol or noradrenaline, respectively, in unanesthetized rats. Male Holtzman rats (280-320 g, n=8-15/group) with acute (1 day) or chronic (21 days) sham or commNTS lesions (1 mA×10 s) and a stainless steel cannula implanted in the lateral ventricle were used. Acute commNTS lesions increased the pressor response to i.c.v. injection of carbachol (0.5 nmol/1µ1) (52 ± 2, vs. sham: 37 ± 2mm Hg) or noradrenaline (80 nmol/1µl) (45 ± 6, vs. sham: 30 ± 3 mm Hg), whereas chronic commNTS lesions did not affect the pressor responses to the same treatments. Lesions of the commNTS impaired chemoreflex responses produced by intravenous KCN, without changing baroreflex responses. The results suggest that commNTS-dependent inhibitory signals are involved in the modulation of the pressor responses to central cholinergic and adrenergic activation, probably limiting vasopressin secretion.


Assuntos
Agonistas alfa-Adrenérgicos/farmacologia , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Norepinefrina/farmacologia , Núcleo Solitário/fisiopatologia , Animais , Barorreflexo , Células Quimiorreceptoras/fisiologia , Eletrólise , Injeções Intraventriculares , Masculino , Ratos , Ratos Sprague-Dawley , Núcleo Solitário/patologia , Vasopressinas/metabolismo
9.
PLoS One ; 7(5): e37587, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22629424

RESUMO

Renal vasodilation and sympathoinhibition are recognized responses induced by hypernatremia, but the central neural pathways underlying such responses are not yet entirely understood. Several findings suggest that A2 noradrenergic neurons, which are found in the nucleus of the solitary tract (NTS), play a role in the pathways that contribute to body fluid homeostasis and cardiovascular regulation. The purpose of this study was to determine the effects of selective lesions of A2 neurons on the renal vasodilation and sympathoinhibition induced by hypertonic saline (HS) infusion. Male Wistar rats (280-350 g) received an injection into the NTS of anti-dopamine-beta-hydroxylase-saporin (A2 lesion; 6.3 ng in 60 nl; n = 6) or free saporin (sham; 1.3 ng in 60 nl; n = 7). Two weeks later, the rats were anesthetized (urethane 1.2 g⋅kg(-1) b.wt., i.v.) and the blood pressure, renal blood flow (RBF), renal vascular conductance (RVC) and renal sympathetic nerve activity (RSNA) were recorded. In sham rats, the HS infusion (3 M NaCl, 1.8 ml⋅kg(-1) b.wt., i.v.) induced transient hypertension (peak at 10 min after HS; 9±2.7 mmHg) and increases in the RBF and RVC (141±7.9% and 140±7.9% of baseline at 60 min after HS, respectively). HS infusion also decreased the RSNA (-45±5.0% at 10 min after HS) throughout the experimental period. In the A2-lesioned rats, the HS infusion induced transient hypertension (6±1.4 mmHg at 10 min after HS), as well as increased RBF and RVC (133±5.2% and 134±6.9% of baseline at 60 min after HS, respectively). However, in these rats, the HS failed to reduce the RSNA (115±3.1% at 10 min after HS). The extent of the catecholaminergic lesions was confirmed by immunocytochemistry. These results suggest that A2 noradrenergic neurons are components of the neural pathways regulating the composition of the extracellular fluid compartment and are selectively involved in hypernatremia-induced sympathoinhibition.


Assuntos
Hipernatremia/fisiopatologia , Rim/fisiopatologia , Neurônios/metabolismo , Norepinefrina/metabolismo , Núcleo Solitário/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Hipernatremia/induzido quimicamente , Hipernatremia/metabolismo , Rim/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Ratos , Ratos Wistar , Circulação Renal/efeitos dos fármacos , Circulação Renal/fisiologia , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Solução Salina Hipertônica/farmacologia , Saporinas , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
10.
Am J Physiol Regul Integr Comp Physiol ; 302(6): R785-93, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22204959

RESUMO

Sympathetic overactivity and altered respiratory control are commonly observed after chronic intermittent hypoxia (CIH) exposure. However, the central mechanisms underlying such neurovegetative dysfunctions remain unclear. Herein, we hypothesized that CIH (6% O(2) every 9 min, 8 h/day, 10 days) in juvenile rats alters glutamatergic transmission in the commissural nucleus tractus solitarius (cNTS), a pivotal site for integration of peripheral chemoreceptor inputs. Using an in situ working heart-brain stem preparation, we found that l-glutamate microinjections (1, 3, and 10 mM) into the cNTS of control rats (n = 8) evoked increases in thoracic sympathetic nerve (tSN) and central vagus nerve (cVN) activities combined with inhibition of phrenic nerve (PN) activity. Besides, the ionotropic glutamatergic receptor antagonism with kynurenic acid (KYN; 250 mM) in the cNTS of control group (n = 7) increased PN burst duration and frequency. In the CIH group (n = 10), the magnitude of l-glutamate-induced cVN excitation was smaller, and the PN inhibitory response was blunted (P < 0.05). In addition, KYN microinjections into the cNTS of CIH rats (n = 9) did not alter PN burst duration and produced smaller increases in its frequency compared with controls. Moreover, KYN microinjections into the cNTS attenuated the sympathoexcitatory response to peripheral chemoreflex activation in control but not in CIH rats (P < 0.05). These functional CIH-induced alterations were accompanied by a significant 10% increase of N-methyl-D-aspartate receptor 1 (NMDAR1) and glutamate receptor 2/3 (GluR2/3) receptor subunit density in the cNTS (n = 3-8, P < 0.05), evaluated by Western blot analysis. These data indicate that glutamatergic transmission is altered in the cNTS of CIH rats and may contribute to the sympathetic and respiratory changes observed in this experimental model.


Assuntos
Hipóxia/fisiopatologia , Receptores de Glutamato/fisiologia , Sistema Respiratório/fisiopatologia , Núcleo Solitário/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Animais , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/administração & dosagem , Ácido Glutâmico/farmacologia , Ácido Cinurênico/administração & dosagem , Ácido Cinurênico/farmacologia , Masculino , Microinjeções , Modelos Animais , Ratos , Ratos Wistar , Receptores de Glutamato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA