Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Protein Sci ; 33(4): e4935, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501462

RESUMO

Flavin-dependent monooxygenases (FMOs) constitute a diverse enzyme family that catalyzes crucial hydroxylation, epoxidation, and Baeyer-Villiger reactions across various metabolic pathways in all domains of life. Due to the intricate nature of this enzyme family's mechanisms, some aspects of their functioning remain unknown. Here, we present the results of molecular dynamics computations, supplemented by a bioinformatics analysis, that clarify the early stages of their catalytic cycle. We have elucidated the intricate binding mechanism of NADPH and L-Orn to a class B monooxygenase, the ornithine hydroxylase from Aspergillus $$ Aspergillus $$ fumigatus $$ fumigatus $$ known as SidA. Our investigation involved a comprehensive characterization of the conformational changes associated with the FAD (Flavin Adenine Dinucleotide) cofactor, transitioning from the out to the in position. Furthermore, we explored the rotational dynamics of the nicotinamide ring of NADPH, shedding light on its role in facilitating FAD reduction, supported by experimental evidence. Finally, we also analyzed the extent of conservation of two Tyr-loops that play critical roles in the process.


Assuntos
Flavina-Adenina Dinucleotídeo , Oxigenases de Função Mista , Oxigenases de Função Mista/química , NADP/química , Oxirredução , Domínio Catalítico , Flavina-Adenina Dinucleotídeo/química
2.
Protein Sci ; 30(10): 2106-2120, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34382711

RESUMO

Ferredoxin-NADP+ reductases (FNRs) are ubiquitous flavoenzymes involved in redox metabolisms. FNRs catalyze the reversible electron transfer between NADP(H) and ferredoxin or flavodoxin. They are classified as plant- and mitochondrial-type FNR. Plant-type FNRs are divided into plastidic and bacterial classes. The plastidic FNRs show turnover numbers between 20 and 100 times higher than bacterial enzymes and these differences have been related to their physiological functions. We demonstrated that purified Escherichia coli FPR (EcFPR) contains tightly bound NADP+ , which does not occur in plastidic type FNRs. The three-dimensional structure of EcFPR evidenced that NADP+ interacts with three arginines (R144, R174, and R184) which could generate a very high affinity and structured site. These arginines are conserved in other bacterial FNRs but not in the plastidic enzymes. We have cross-substituted EcFPR arginines with residues present in analogous positions in the Pisum sativum FNR (PsFNR) and replaced these amino acids by arginines in PsFNR. We analyzed all proteins by structural, kinetic, and stability studies. We found that EcFPR mutants do not contain bound NADP+ and showed increased Km for this nucleotide. The EcFPR activity was inhibited by NADP+ but this behavior disappeared as arginines were removed. A NADP+ analog of the nicotinamide portion produced an activating effect on EcFPR and promoted the NADP+ release. Our results give evidence for a new model of NADP+ binding and catalysis in bacterial FNRs.We propose that this tight NADP+ binding constitutes an essential catalytic and regulatory mechanism of bacterial FNRs involved in redox homeostasis.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Ferredoxina-NADP Redutase/química , NADP/química , Cinética , Pisum sativum/enzimologia , Ligação Proteica
3.
Mol Biochem Parasitol ; 244: 111383, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34048823

RESUMO

Giardia lamblia, due to the habitat in which it develops, requires a continuous supply of intermediate compounds that allow it to survive in the host. The pentose phosphate pathway (PPP) provides essential molecules such as NADPH and ribulose-5-phosphate during the oxidative phase of the pathway. One of the key enzymes during this stage is 6-phosphogluconate dehydrogenase (6 PGDH) for generating NADPH. Given the relevance of the enzyme, in the present work, the 6pgdh gene from G. lamblia was amplified and cloned to produce the recombinant protein (Gl-6 PGDH) and characterize it functionally and structurally after the purification of Gl-6 PGDH by affinity chromatography. The results of the characterization showed that the protein has a molecular mass of 54 kDa, with an optimal pH of 7.0 and a temperature of 36-42 °C. The kinetic parameters of Gl-6 PGDH were Km = 49.2 and 139.9 µM (for NADP+ and 6-PG, respectively), Vmax =26.27 µmol*min-1*mg-1, and Kcat = 24.0 s-1. Finally, computational modeling studies were performed to obtain a structural visualization of the Gl-6 PGDH protein. The generation of the model and the characterization assays will allow us to expand our knowledge for future studies of the function of the protein in the metabolism of the parasite.


Assuntos
Giardia lamblia/enzimologia , Gluconatos/química , NADP/química , Fosfogluconato Desidrogenase/química , Proteínas de Protozoários/química , Ribulosefosfatos/química , Motivos de Aminoácidos , Sítios de Ligação , Clonagem Molecular/métodos , Expressão Gênica , Geobacillus stearothermophilus/química , Geobacillus stearothermophilus/enzimologia , Giardia lamblia/genética , Gluconatos/metabolismo , Humanos , Cinética , Modelos Moleculares , NADP/metabolismo , Via de Pentose Fosfato/genética , Fosfogluconato Desidrogenase/genética , Fosfogluconato Desidrogenase/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribulosefosfatos/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato , Termodinâmica
4.
Acta Crystallogr D Struct Biol ; 77(Pt 3): 369-379, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33645540

RESUMO

Heme catalases remove hydrogen peroxide by catalyzing its dismutation into water and molecular oxygen, thereby protecting the cell from oxidative damage. The Atacama plateau in northern Argentina, located 4000 m above sea level, is a desert area characterized by extreme UV radiation, high salinity and a large temperature variation between day and night. Here, the heme catalase KatE1 from an Atacama Acinetobacter sp. isolate was cloned, expressed and purified, with the aim of investigating its extremophilic properties. Kinetic and stability assays indicate that KatE1 is maximally active at 50°C in alkaline media, with a nearly unchanged specific activity between 0°C and 40°C in the pH range 5.5-11.0. In addition, its three-dimensional crystallographic structure was solved, revealing minimal structural differences compared with its mesophilic and thermophilic analogues, except for a conserved methionine residue on the distal heme side, which is proposed to comprise a molecular adaptation to oxidative damage.


Assuntos
Aclimatação , Acinetobacter/enzimologia , Proteínas de Bactérias/química , Catalase/química , Temperatura Baixa , Argentina , Sítios de Ligação , Cristalografia por Raios X , Estabilidade Enzimática , Heme/química , Modelos Moleculares , NADP/química , Conformação Proteica
5.
J Phys Chem A ; 124(5): 849-857, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31951411

RESUMO

Local reactivity descriptors such as atom-condensed Fukui functions are promising computational tools to study chemical reactivity at specific sites within a molecule. Their applications have been mainly focused on isolated molecules in their most stable conformation without considering the effects of the surroundings. Here we propose to combine quantum mechanics/molecular mechanics Born-Oppenheimer molecular dynamics simulations to obtain the microstates (configurations) of a molecular system using different representations of the molecular environment and calculate Boltzmann-weighted atom-condensed local reactivity descriptors based on conceptual density functional theory. Our approach takes the conformational fluctuations of the molecular system and the polarization of its electron density by the environment into account, allowing us to analyze the effect of the molecular environment on reactivity. In this contribution, we apply the method mentioned above to the catalytic fixation of carbon dioxide by crotonyl-CoA carboxylase/reductase and study if the enzyme alters the reactivity of its substrate compared with an aqueous solution. Our main result is that the protein environment activates the substrate by the elimination of solute-solvent hydrogen bonds from aqueous solution in the two elementary steps of the reaction mechanism: the nucleophilic attack of a hydride anion from NADPH on the α,ß-unsaturated thioester and the electrophilic attack of carbon dioxide on the formed enolate species.


Assuntos
Dióxido de Carbono/química , Carbono-Carbono Ligases/química , Acil Coenzima A/química , Teoria da Densidade Funcional , Ligação de Hidrogênio , Modelos Químicos , Simulação de Dinâmica Molecular , NADP/química
6.
Biochim Biophys Acta Proteins Proteom ; 1868(2): 140331, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31760039

RESUMO

In general, eukaryotic glucose-6-phosphate dehydrogenases (G6PDHs) are structurally stabilized by NADP+. Here we show by spectrofluorometric analysis, thermal and urea denaturation, and trypsin proteolysis, that a different mechanism stabilizes the enzyme from Pseudomonas aeruginosa (PaG6PDH) (EC 1.1.1.363). The spectrofluorometric analysis of the emission of 8-anilino-1-naphthalenesulfonic acid (ANS) indicates that this stabilization is the result of a structural change in the enzyme caused by G6P. The similarity between the Kd values determined for the PaG6PDH-G6P complex (78.0 ±â€¯7.9 µM) and the K0.5 values determined for G6P (57.9 ±â€¯2.5 and 104.5 ±â€¯9.3 µM in the NADP+- and NAD+-dependent reactions, respectively) suggests that the structural changes are the result of G6P binding to the active site of PaG6PDH. Modeling of PaG6PDH indicated the residues that potentially bind the ligand. These results and a phylogenetic analysis of the amino acid sequences of forty-four G6PDHs, suggest that the stabilization observed for PaG6PDH could be a characteristic that distinguishes this and other G6PDHs that use NAD+ and NADP+ from those that use NADP+ only or preferentially, such as those found in eukaryotes. This characteristic could be related to the metabolic roles these enzymes play in the organisms to which they belong.


Assuntos
Glucosefosfato Desidrogenase/metabolismo , Pseudomonas aeruginosa/enzimologia , Sequência de Aminoácidos , Naftalenossulfonato de Anilina/química , Sítios de Ligação , Domínio Catalítico , Glucose-6-Fosfato/química , Glucose-6-Fosfato/metabolismo , Glucosefosfato Desidrogenase/classificação , Glucosefosfato Desidrogenase/genética , Cinética , Simulação de Dinâmica Molecular , NAD/metabolismo , NADP/química , NADP/metabolismo , Filogenia , Ligação Proteica , Desnaturação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
7.
J Biol Chem ; 294(38): 14055-14067, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31366734

RESUMO

2-Cys peroxiredoxins (Prxs) rapidly reduce H2O2, thereby acting as antioxidants and also as sensors and transmitters of H2O2 signals in cells. Interestingly, eukaryotic 2-Cys Prxs lose their peroxidase activity at high H2O2 levels. Under these conditions, H2O2 oxidizes the sulfenic acid derivative of the Prx peroxidatic Cys (CPSOH) to the sulfinate (CPSO2-) and sulfonated (CPSO3-) forms, redirecting the CPSOH intermediate from the catalytic cycle to the hyperoxidation/inactivation pathway. The susceptibility of 2-Cys Prxs to hyperoxidation varies greatly and depends on structural features that affect the lifetime of the CPSOH intermediate. Among the human Prxs, Prx1 has an intermediate susceptibility to H2O2 and was selected here to investigate the effect of a physiological concentration of HCO3-/CO2 (25 mm) on its hyperoxidation. Immunoblotting and kinetic and MS/MS experiments revealed that HCO3-/CO2 increases Prx1 hyperoxidation and inactivation both in the presence of excess H2O2 and during enzymatic (NADPH/thioredoxin reductase/thioredoxin) and chemical (DTT) turnover. We hypothesized that the stimulating effect of HCO3-/CO2 was due to HCO4-, a peroxide present in equilibrated solutions of H2O2 and HCO3-/CO2 Indeed, additional experiments and calculations uncovered that HCO4- oxidizes CPSOH to CPSO2- with a second-order rate constant 2 orders of magnitude higher than that of H2O2 ((1.5 ± 0.1) × 105 and (2.9 ± 0.2) × 103 m-1·s-1, respectively) and that HCO4- is 250 times more efficient than H2O2 at inactivating 1% Prx1 per turnover. The fact that the biologically ubiquitous HCO3-/CO2 pair stimulates Prx1 hyperoxidation and inactivation bears relevance to Prx1 functions beyond its antioxidant activity.


Assuntos
Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Sequência de Aminoácidos , Antioxidantes/química , Antioxidantes/metabolismo , Bicarbonatos/química , Bicarbonatos/metabolismo , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Catálise , Cisteína/química , Cisteína/metabolismo , Humanos , Cinética , NADP/química , NADP/metabolismo , Oxirredução , Peróxidos/metabolismo , Espectrometria de Massas em Tandem/métodos
8.
Biomolecules ; 10(1)2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31892224

RESUMO

Giardia lambia is a flagellated protozoan parasite that lives in the small intestine and is the causal agent of giardiasis. It has been reported that G. lamblia exhibits glucose-6-phosphate dehydrogenase (G6PD), the first enzyme in the pentose phosphate pathway (PPP). Our group work demonstrated that the g6pd and 6pgl genes are present in the open frame that gives rise to the fused G6PD::6PGL protein; where the G6PD region is similar to the 3D structure of G6PD in Homo sapiens. The objective of the present work was to show the presence of the structural NADP+ binding site on the fused G6PD::6PGL protein and evaluate the effect of the NADP+ molecule on protein stability using biochemical and computational analysis. A protective effect was observed on the thermal inactivation, thermal stability, and trypsin digestions assays when the protein was incubated with NADP+. By molecular docking, we determined the possible structural-NADP+ binding site, which is located between the Rossmann fold of G6PD and 6PGL. Finally, molecular dynamic (MD) simulation was used to test the stability of this complex; it was determined that the presence of both NADP+ structural and cofactor increased the stability of the enzyme, which is in agreement with our experimental results.


Assuntos
Giardia lamblia/enzimologia , Glucosefosfato Desidrogenase/química , NADP/química , NADP/metabolismo , Fosfogluconato Desidrogenase/química , Sítios de Ligação , Glucosefosfato Desidrogenase/metabolismo , Humanos , Modelos Moleculares , Fosfogluconato Desidrogenase/metabolismo , Conformação Proteica , Estabilidade Proteica , Temperatura
9.
Braz. j. microbiol ; 49(3): 662-667, July-Sept. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-951808

RESUMO

Abstract The effect of the intracellular microenvironment in the presence of an oxygen vector during expression of a fusion protein in Escherichia coli was studied. Three organic solutions at different concentration were chosen as oxygen vectors for fumarase expression. The addition of n-dodecane did not induce a significant change in the expression of fumarase, while the activity of fumarase increased significantly to 124% at 2.5% n-dodecane added after 9 h induction. The concentration of ATP increased sharply during the first 6 h of induction, to a value 7600% higher than that in the absence of an oxygen-vector. NAD/NADH and NADP/NADPH ratios were positively correlated with fumarase activity. n-Dodecane can be used to increase the concentration of ATP and change the energy metabolic pathway, providing sufficient energy for fumarase folding.


Assuntos
Oxigênio/metabolismo , Expressão Gênica , Alcanos/metabolismo , Escherichia coli/genética , Fumarato Hidratase/metabolismo , Oxigênio/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Dobramento de Proteína , Alcanos/química , Escherichia coli/metabolismo , Fumarato Hidratase/genética , Fumarato Hidratase/química , NADP/metabolismo , NADP/química
10.
Braz J Microbiol ; 49(3): 662-667, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29409732

RESUMO

The effect of the intracellular microenvironment in the presence of an oxygen vector during expression of a fusion protein in Escherichia coli was studied. Three organic solutions at different concentration were chosen as oxygen vectors for fumarase expression. The addition of n-dodecane did not induce a significant change in the expression of fumarase, while the activity of fumarase increased significantly to 124% at 2.5% n-dodecane added after 9h induction. The concentration of ATP increased sharply during the first 6h of induction, to a value 7600% higher than that in the absence of an oxygen-vector. NAD/NADH and NADP/NADPH ratios were positively correlated with fumarase activity. n-Dodecane can be used to increase the concentration of ATP and change the energy metabolic pathway, providing sufficient energy for fumarase folding.


Assuntos
Alcanos/metabolismo , Escherichia coli/genética , Fumarato Hidratase/metabolismo , Expressão Gênica , Oxigênio/metabolismo , Alcanos/química , Escherichia coli/metabolismo , Fumarato Hidratase/química , Fumarato Hidratase/genética , NADP/química , NADP/metabolismo , Oxigênio/química , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA