Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Arch Insect Biochem Physiol ; 115(4): e22106, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597092

RESUMO

Kissing bugs do not respond to host cues when recently molted and only exhibit robust host-seeking several days after ecdysis. Behavioral plasticity has peripheral correlates in antennal gene expression changes through the week after ecdysis. The mechanisms regulating these peripheral changes are still unknown, but neuropeptide, G-protein coupled receptor, nuclear receptor, and takeout genes likely modulate peripheral sensory physiology. We evaluated their expression in antennal transcriptomes along the first week postecdysis of Rhodnius prolixus 5th instar larvae. Besides, we performed clustering and co-expression analyses to reveal relationships between neuromodulatory (NM) and sensory genes. Significant changes in transcript abundance were detected for 50 NM genes. We identified 73 sensory-related and NM genes that were assigned to nine clusters. According to their expression patterns, clusters were classified into four groups: two including genes up or downregulated immediately after ecdysis; and two with genes with expression altered at day 2. Several NM genes together with sensory genes belong to the first group, suggesting functional interactions. Co-expression network analysis revealed a set of genes that seem to connect with sensory system maturation. Significant expression changes in NM components were described in the antennae of R. prolixus after ecdysis, suggesting that a local NM system acts on antennal physiology. These changes may modify the sensitivity of kissing bugs to host cues during this maturation interval.


Assuntos
Neuropeptídeos , Rhodnius , Triatoma , Animais , Rhodnius/genética , Rhodnius/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Transcriptoma , Muda
2.
J Physiol Biochem ; 80(2): 451-463, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564162

RESUMO

The physical and functional interaction between transient receptor potential channel ankyrin 1 (TRPA1) and neuronal calcium sensor 1 (NCS-1) was assessed. NCS-1 is a calcium (Ca2+) sensor found in many tissues, primarily neurons, and TRPA1 is a Ca2+ channel involved not only in thermal and pain sensation but also in conditions such as cancer and chemotherapy-induced peripheral neuropathy, in which NCS-1 is also a regulatory component.We explored the interactions between these two proteins by employing western blot, qRT-PCR, co-immunoprecipitation, Ca2+ transient monitoring with Fura-2 spectrophotometry, and electrophysiology assays in breast cancer cells (MDA-MB-231) with different levels of NCS-1 expression and neuroblastoma cells (SH-SY5Y).Our findings showed that the expression of TRPA1 was directly correlated with NCS-1 levels at both the protein and mRNA levels. Additionally, we found a physical and functional association between these two proteins. Physically, the NCS-1 and TRPA1 co-immunoprecipitate. Functionally, NCS-1 enhanced TRPA1-dependent Ca2+ influx, current density, open probability, and conductance, where the functional effects depended on PI3K. Conclusion: NCS-1 appears to act not only as a Ca2+ sensor but also modulates TRPA1 protein expression and channel function in a direct fashion through the PI3K pathway. These results contribute to understanding how Ca2+ homeostasis is regulated and provides a mechanism underlying conditions where Ca2+ dynamics are compromised, including breast cancer. With a cellular pathway identified, targeted treatments can be developed for breast cancer and neuropathy, among other related diseases.


Assuntos
Neoplasias da Mama , Proteínas Sensoras de Cálcio Neuronal , Neuropeptídeos , Canal de Cátion TRPA1 , Feminino , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular Tumoral , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Proteínas Sensoras de Cálcio Neuronal/genética , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Canal de Cátion TRPA1/metabolismo , Canal de Cátion TRPA1/genética
3.
Peptides ; 173: 171138, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38147963

RESUMO

The hypothalamic neuropeptides linked to appetite and satiety were investigated in obese mice treated with cotadutide (a dual receptor agonist of glucagon-like peptide 1 (GLP-1R)/Glucagon (GCGR)). Twelve-week-old male C57BL/6 mice were fed a control diet (C group, n = 20) or a high-fat diet (HF group, n = 20) for ten weeks. Each group was further divided, adding cotadutide treatment and forming groups C, CC, HF, and HFC for four additional weeks. The hypothalamic arcuate neurons were labeled by immunofluorescence, and protein expressions (Western blotting) for neuropeptide Y (NPY), proopiomelanocortin (POMC), agouti-related protein (AgRP), and cocaine- and amphetamine-regulated transcript (CART). Cotadutide enhanced POMC and CART neuropeptides and depressed NPY and AGRP neuropeptides. In addition, gene expressions (RT-qPCR) determined that Lepr (leptin receptor) and Calcr (calcitonin receptor) were diminished in HF compared to C but enhanced in CC compared to C and HFC compared to HF. Besides, Socs3 (suppressor of cytokine signaling 3) was decreased in HFC compared to HF, while Sst (somatostatin) was higher in HFC compared to HF; Tac1 (tachykinin 1) and Mc4r (melanocortin-4-receptor) were lower in HF compared to C but increased in HFC compared to HF. Also, Glp1r and Gcgr were higher in HFC compared to HF. In conclusion, the findings are compelling, demonstrating the effects of cotadutide on hypothalamic neuropeptides and hormone receptors of obese mice. Cotadutide modulates energy balance through the gut-brain axis and its associated signaling pathways. The study provides insights into the mechanisms underlying cotadutide's anti-obesity effects and its possible implications for obesity treatment.


Assuntos
Glucagon , Neuropeptídeos , Peptídeos , Camundongos , Animais , Masculino , Proteína Relacionada com Agouti , Glucagon/metabolismo , Camundongos Obesos , Pró-Opiomelanocortina/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Camundongos Endogâmicos C57BL , Neuropeptídeos/genética , Hipotálamo/metabolismo , Neuropeptídeo Y/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo
4.
J Mol Evol ; 91(6): 882-896, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38102415

RESUMO

In the year 2002, DNA loss model (DNA-LM) postulated that neuropeptide genes to emerged through codons loss via the repair of damaged DNA from ancestral gene namely Neuropeptide Precursor Predictive (NPP), which organization correspond two or more neuropeptides precursors evolutive related. The DNA-LM was elaborated according to amino acids homology among LWamide, APGWamide, red pigment-concentrating hormone (RPCH), adipokinetic hormones (AKHs) and in silico APGW/RPCH NPPAPGW/AKH NPP were proposed. With the above principle, it was proposed the evolution of corazonin (CRZ), gonadotropin-releasing hormone (GnRH), AKH, and AKH/CRZ (ACP), but any NPP never was considered. However, the evolutive relation via DNA-LM among these neuropeptides precursors not has been established yet. Therefore, the transcriptomes from crabs Callinectes toxotes and Callinectes arcuatus were used to characterized ACP and partial CRZ precursors, respectively. BLAST alignment with APGW/RPCH NPP and APGW/AKH NPP allow identified similar NPP in the rotifer Brachionus plicatilis and other invertebrates. Moreover, three bioinformatics algorithms and manual verification were used to purify 13,778 sequences, generating a database with 719 neuropeptide precursors. Phylogenetic trees with the DNA-LM parameters showed that some ACP, CRZ, AKH2 and two NPP share nodes with GnRH from vertebrates and some of this neuropeptide had nodes in invertebrates. Whereas the phylogenetic tree with standard parameters do not showed previous node pattern. Robinson-Foulds metric corroborates the differences among phylogenetic trees. Homology relationship showed four putative orthogroups; AKH4, CRZ, and protostomes GnRH had individual group. This is the first demonstration of NPP in species and would explain the evolution neuropeptide families by the DNA-LM.


Assuntos
Hormônio Liberador de Gonadotropina , Neuropeptídeos , Humanos , Animais , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Filogenia , Evolução Molecular , Neuropeptídeos/genética , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Invertebrados/genética , DNA/metabolismo
5.
Ticks Tick Borne Dis ; 13(3): 101910, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35121230

RESUMO

The synganglion is the central nervous system of ticks and, as such, controls tick physiology. It does so through the production and release of signaling molecules, many of which are neuropeptides. These peptides can function as neurotransmitters, neuromodulators and/or neurohormones, although in most cases their functions remain to be established. We identified and performed in silico characterization of neuropeptides present in different life stages and organs of Rhipicephalus microplus, generating transcriptomes from ovary, salivary glands, fat body, midgut and embryo. Annotation of synganglion transcripts led to the identification of 32 functional categories of proteins, of which the most abundant were: secreted, energetic metabolism and oxidant metabolism/detoxification. Neuropeptide precursors are among the sequences over-represented in R. microplus synganglion, with at least 5-fold higher transcription compared with other stages/organs. A total of 52 neuropeptide precursors were identified: ACP, achatin, allatostatins A, CC and CCC, allatotropin, bursicon A/B, calcitonin A and B, CCAP, CCHamide, CCRFamide, CCH/ITP, corazonin, DH31, DH44, eclosion hormone, EFLamide, EFLGGPamide, elevenin, ETH, FMRFamide myosuppressin-like, glycoprotein A2/B5, gonadulin, IGF, inotocin, insulin-like peptides, iPTH, leucokinin, myoinhibitory peptide, NPF 1 and 2, orcokinin, proctolin, pyrokinin/periviscerokinin, relaxin, RYamide, SIFamide, sNPF, sulfakinin, tachykinin and trissin. Several of these neuropeptides have not been previously reported in ticks, as the presence of ETH that was first clearly identified in Parasitiformes, which include ticks and mites. Prediction of the mature neuropeptides from precursor sequences was performed using available information about these peptides from other species, conserved domains and motifs. Almost all neuropeptides identified are also present in other tick species. Characterizing the role of neuropeptides and their respective receptors in tick physiology can aid the evaluation of their potential as drug targets.


Assuntos
Ixodidae , Neuropeptídeos , Rhipicephalus , Animais , Feminino , Ixodidae/metabolismo , Neuropeptídeos/química , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Peptídeos , Rhipicephalus/genética , Rhipicephalus/metabolismo , Transcriptoma
6.
J Comp Neurol ; 529(13): 3336-3358, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34041754

RESUMO

Freshwater snails of the genus Biomphalaria serve as intermediate hosts for the digenetic trematode Schistosoma mansoni, the etiological agent for the most widespread form of intestinal schistosomiasis. As neuropeptide signaling in host snails can be altered by trematode infection, a neural transcriptomics approach was undertaken to identify peptide precursors in Biomphalaria glabrata, the major intermediate host for S. mansoni in the Western Hemisphere. Three transcripts that encode peptides belonging to the FMRF-NH2 -related peptide (FaRP) family were identified in B. glabrata. One transcript encoded a precursor polypeptide (Bgl-FaRP1; 292 amino acids) that included eight copies of the tetrapeptide FMRF-NH2 and single copies of FIRF-NH2 , FLRF-NH2 , and pQFYRI-NH2 . The second transcript encoded a precursor (Bgl-FaRP2; 347 amino acids) that comprised 14 copies of the heptapeptide GDPFLRF-NH2 and 1 copy of SKPYMRF-NH2 . The precursor encoded by the third transcript (Bgl-FaRP3; 287 amino acids) recapitulated Bgl-FaRP2 but lacked the full SKPYMRF-NH2 peptide. The three precursors shared a common signal peptide, suggesting a genomic organization described previously in gastropods. Immunohistochemical studies were performed on the nervous systems of B. glabrata and B. alexandrina, a major intermediate host for S. mansoni in Egypt. FMRF-NH2 -like immunoreactive (FMRF-NH2 -li) neurons were located in regions of the central nervous system associated with reproduction, feeding, and cardiorespiration. Antisera raised against non-FMRF-NH2 peptides present in the tetrapeptide and heptapeptide precursors labeled independent subsets of the FMRF-NH2 -li neurons. This study supports the participation of FMRF-NH2 -related neuropeptides in the regulation of vital physiological and behavioral systems that are altered by parasitism in Biomphalaria.


Assuntos
FMRFamida/genética , Neuropeptídeos/genética , Esquistossomose mansoni/genética , Transcriptoma/genética , Sequência de Aminoácidos , Animais , Biomphalaria , FMRFamida/análise , FMRFamida/metabolismo , Neuropeptídeos/análise , Neuropeptídeos/metabolismo , Imagem Óptica/métodos , Schistosoma mansoni/genética , Schistosoma mansoni/isolamento & purificação , Esquistossomose mansoni/metabolismo
7.
J Neurosci ; 41(4): 689-710, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33262246

RESUMO

Circadian rhythms have been extensively studied in Drosophila; however, still little is known about how the electrical properties of clock neurons are specified. We have performed a behavioral genetic screen through the downregulation of candidate ion channels in the lateral ventral neurons (LNvs) and show that the hyperpolarization-activated cation current Ih is important for the behaviors that the LNvs influence: temporal organization of locomotor activity, analyzed in males, and sleep, analyzed in females. Using whole-cell patch clamp electrophysiology we demonstrate that small LNvs (sLNvs) are bursting neurons, and that Ih is necessary to achieve the high-frequency bursting firing pattern characteristic of both types of LNvs in females. Since firing in bursts has been associated to neuropeptide release, we hypothesized that Ih would be important for LNvs communication. Indeed, herein we demonstrate that Ih is fundamental for the recruitment of pigment dispersing factor (PDF) filled dense core vesicles (DCVs) to the terminals at the dorsal protocerebrum and for their timed release, and hence for the temporal coordination of circadian behaviors.SIGNIFICANCE STATEMENT Ion channels are transmembrane proteins with selective permeability to specific charged particles. The rich repertoire of parameters that may gate their opening state, such as voltage-sensitivity, modulation by second messengers and specific kinetics, make this protein family a determinant of neuronal identity. Ion channel structure is evolutionary conserved between vertebrates and invertebrates, making any discovery easily translatable. Through a screen to uncover ion channels with roles in circadian rhythms, we have identified the Ih channel as an important player in a subset of clock neurons of the fruit fly. We show that lateral ventral neurons (LNvs) need Ih to fire action potentials in a high-frequency bursting mode and that this is important for peptide transport and the control of behavior.


Assuntos
Comportamento Animal/fisiologia , Ritmo Circadiano/fisiologia , Drosophila melanogaster/fisiologia , Neurônios/fisiologia , Sono/fisiologia , Animais , Comunicação Celular/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Feminino , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Masculino , Atividade Motora/fisiologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Neuropeptídeos/fisiologia , Técnicas de Patch-Clamp , Caracteres Sexuais
8.
mSphere ; 5(5)2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907953

RESUMO

Intracellular calcium (Ca2+) is crucial for signal transduction in Cryptococcus neoformans, the major cause of fatal fungal meningitis. The calcineurin pathway is the only Ca2+-requiring signaling cascade implicated in cryptococcal stress adaptation and virulence, with Ca2+ binding mediated by the EF-hand domains of the Ca2+ sensor protein calmodulin. In this study, we identified the cryptococcal ortholog of neuronal calcium sensor 1 (Ncs1) as a member of the EF-hand superfamily. We demonstrated that Ncs1 has a role in Ca2+ homeostasis under stress and nonstress conditions, as the ncs1Δ mutant is sensitive to a high Ca2+ concentration and has an elevated basal Ca2+ level. Furthermore, NCS1 expression is induced by Ca2+, with the Ncs1 protein adopting a punctate subcellular distribution. We also demonstrate that, in contrast to the case with Saccharomyces cerevisiae, NCS1 expression in C. neoformans is regulated by the calcineurin pathway via the transcription factor Crz1, as NCS1 expression is reduced by FK506 treatment and CRZ1 deletion. Moreover, the ncs1Δ mutant shares a high temperature and high Ca2+ sensitivity phenotype with the calcineurin and calmodulin mutants (cna1Δ and cam1Δ), and the NCS1 promoter contains two calcineurin/Crz1-dependent response elements (CDRE1). Ncs1 deficiency coincided with reduced growth, characterized by delayed bud emergence and aberrant cell division, and hypovirulence in a mouse infection model. In summary, our data show that Ncs1 has a significant role as a Ca2+ sensor in C. neoformans, working with calcineurin to regulate Ca2+ homeostasis and, consequently, promote fungal growth and virulence.IMPORTANCECryptococcus neoformans is the major cause of fungal meningitis in HIV-infected patients. Several studies have highlighted the important contributions of Ca2+ signaling and homeostasis to the virulence of C. neoformans Here, we identify the cryptococcal ortholog of neuronal calcium sensor 1 (Ncs1) and demonstrate its role in Ca2+ homeostasis, bud emergence, cell cycle progression, and virulence. We also show that Ncs1 function is regulated by the calcineurin/Crz1 signaling cascade. Our work provides evidence of a link between Ca2+ homeostasis and cell cycle progression in C. neoformans.


Assuntos
Calcineurina/genética , Proteínas de Ligação ao Cálcio/genética , Divisão Celular/genética , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Proteínas Sensoras de Cálcio Neuronal/genética , Neuropeptídeos/genética , Animais , Cryptococcus neoformans/química , Feminino , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Virulência/genética
9.
J Clin Invest ; 130(11): 5989-6004, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32750040

RESUMO

How T cells integrate environmental cues into signals that limit the magnitude and length of immune responses is poorly understood. Here, we provide data that demonstrate that B55ß, a regulatory subunit of protein phosphatase 2A, represents a molecular link between cytokine concentration and apoptosis in activated CD8+ T cells. Through the modulation of AKT, B55ß induced the expression of the proapoptotic molecule Hrk in response to cytokine withdrawal. Accordingly, B55ß and Hrk were both required for in vivo and in vitro contraction of activated CD8+ lymphocytes. We show that this process plays a role during clonal contraction, establishment of immune memory, and preservation of peripheral tolerance. This regulatory pathway may represent an unexplored opportunity to end unwanted immune responses or to promote immune memory.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Proteína Fosfatase 2/imunologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Camundongos , Camundongos Transgênicos , Neuropeptídeos/genética , Neuropeptídeos/imunologia , Proteína Fosfatase 2/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia
10.
Curr Biol ; 30(16): 3154-3166.e4, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32619484

RESUMO

We have previously reported that pigment dispersing factor (PDF) neurons, which are essential in the control of rest-activity cycles in Drosophila, undergo circadian remodeling of their axonal projections, a phenomenon called circadian structural plasticity. Axonal arborizations display higher complexity during the day and become simpler at night, and this remodeling involves changes in the degree of connectivity. This phenomenon depends on the clock present within the ventrolateral neurons (LNvs) as well as in glia. In this work, we characterize in detail the contribution of the PDF neuropeptide to structural plasticity at different times across the day. Using diverse genetic strategies to temporally restrict its downregulation, we demonstrate that even subtle alterations to PDF cycling at the dorsal protocerebrum correlate with impaired remodeling, underscoring its relevance for the characteristic morning spread; PDF released from the small LNvs (sLNvs) and the large LNvs (lLNvs) contribute to the process. Moreover, forced depolarization recruits activity-dependent mechanisms to mediate growth only at night, overcoming the restriction imposed by the clock on membrane excitability. Interestingly, the active process of terminal remodeling requires PDF receptor (PDFR) signaling acting locally through the cyclic-nucleotide-gated channel ion channel subunit A (CNGA). Thus, clock-dependent PDF signaling shapes the connectivity of these essential clock neurons on daily basis.


Assuntos
Relógios Circadianos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Plasticidade Neuronal , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Ritmo Circadiano , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Atividade Motora , Neurônios/citologia , Neuropeptídeos/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA