Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
1.
Molecules ; 28(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36677929

RESUMO

Arthroplasty is an orthopedic surgical procedure that replaces a dysfunctional joint by an orthopedic prosthesis, thereby restoring joint function. Upon the use of the joint prosthesis, a wearing process begins, which releases components such as titanium dioxide (TiO2) that trigger an immune response in the periprosthetic tissue, leading to arthritis, arthroplasty failure, and the need for revision. Flavonoids belong to a class of natural polyphenolic compounds that possess antioxidant and anti-inflammatory activities. Hesperidin methyl chalcone's (HMC) analgesic, anti-inflammatory, and antioxidant effects have been investigated in some models, but its activity against the arthritis caused by prosthesis-wearing molecules, such as TiO2, has not been investigated. Mice were treated with HMC (100 mg/kg, intraperitoneally (i.p.)) 24 h after intra-articular injection of 3 mg/joint of TiO2, which was used to induce chronic arthritis. HMC inhibited mechanical hyperalgesia, thermal hyperalgesia, joint edema, leukocyte recruitment, and oxidative stress in the knee joint (alterations in gp91phox, GSH, superoxide anion, and lipid peroxidation) and in recruited leukocytes (total reactive oxygen species and GSH); reduced patellar proteoglycan degradation; and decreased pro-inflammatory cytokine production. HMC also reduced the activation of nociceptor-sensory TRPV1+ and TRPA1+ neurons. These effects occurred without renal, hepatic, or gastric damage. Thus, HMC reduces arthritis triggered by TiO2, a component released upon wearing of prosthesis.


Assuntos
Artrite , Chalconas , Hesperidina , Camundongos , Animais , Nociceptores/metabolismo , Chalconas/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Artrite/tratamento farmacológico , Estresse Oxidativo , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia , Hiperalgesia/tratamento farmacológico , Citocinas/metabolismo
2.
Exp Neurol ; 357: 114190, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35907583

RESUMO

TREK2 is a member of the 2-pore domain family of K+ channels (K2P) preferentially expressed by unmyelinated, slow-conducting and non-peptidergic isolectin B4-binding (IB4+) primary sensory neurons of the dorsal root ganglia (DRG). IB4+ neurons depend on the glial-derived neurotrophic factor (GDNF) family of ligands (GFL's) to maintain their phenotype. In our previous work, we demonstrated that 7 days after spinal nerve axotomy (SNA) of the L5 DRG, TREK2 moves away from the cell membrane resulting in a more depolarised resting membrane potential (Em). Given that axotomy deprives DRG neurons from peripherally-derived GFL's, we hypothesized that they might control the expression of TREK2. Using a combination of immunohistochemistry, immunocytochemistry, western blotting, in vivo pharmacological manipulation and behavioral tests we examined the ability of the GFL's (GDNF, neurturin and artemin) and their selective receptors (GFRα1, GFRα2 and GFRα3) to regulate the expression and function of TREK2 in the DRG. We found that TREK2 correlated strongly with the three receptors normally and ipsilaterally for all GFR's after SNA. GDNF, but not NGF, neurturin or artemin up-regulated the expression of TREK2 in cultured DRG neurons. In vivo continuous, subcutaneous administration of GDNF restored the subcellular distribution of TREK2 ipsilaterally and reversed mechanical and cold allodynia 7 days after SNA. This is the first demonstration that GDNF controls the expression of a K2P channel in nociceptors. As TREK2 controls the Em of C-nociceptors affecting their excitability, our finding has therapeutic potential in the treatment of chronic pain.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Neuralgia , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Animais , Axotomia , Gânglios Espinais/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Neuralgia/metabolismo , Neurturina , Nociceptores/metabolismo , Ratos
3.
Br J Pharmacol ; 179(18): 4500-4515, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35716378

RESUMO

BACKGROUND AND PURPOSE: Gouty arthritis is characterized by an intense inflammatory response to monosodium urate crystals (MSU), which induces severe pain. Current therapies are often ineffective in reducing gout-related pain. Resolvin D1 (RvD1) is a specialized pro-resolving lipid mediator with anti-inflammatory and analgesic proprieties. In this study, we evaluated the effects and mechanisms of action of RvD1 in an experimental mouse model of gouty arthritis, an aim that was not pursued previously in the literature. EXPERIMENTAL APPROACH: Male mice were treated with RvD1 (intrathecally or intraperitoneally) before or after intraarticular stimulation with MSU. Mechanical hyperalgesia was assessed using an electronic von Frey aesthesiometer. Leukocyte recruitment was determined by knee joint wash cell counting and immunofluorescence. IL-1ß production was measured by ELISA. Phosphorylated NF-kB and apoptosis-associated speck-like protein containing CARD (ASC) were detected by immunofluorescence, and mRNA expression was determined by RT-qPCR. CGRP release was determined by EIA and immunofluorescence. MSU crystal phagocytosis was evaluated by confocal microscopy. KEY RESULTS: RvD1 inhibited MSU-induced mechanical hyperalgesia in a dose- and time-dependent manner by reducing leukocyte recruitment and IL-1ß production in the knee joint. Intrathecal RvD1 reduced the activation of peptidergic neurons and macrophages as well as silenced nociceptor to macrophage communication and macrophage function. CGRP stimulated MSU phagocytosis and IL-1ß production by macrophages. RvD1 downmodulated this phenomenon directly by acting on macrophages, and indirectly by inhibiting CGRP release and CGRP-dependent activation of macrophages. CONCLUSIONS AND IMPLICATIONS: This study reveals a hitherto unknown neuro-immune axis in gouty arthritis that is targeted by RvD1.


Assuntos
Artrite Gotosa , Animais , Artrite Gotosa/induzido quimicamente , Artrite Gotosa/tratamento farmacológico , Peptídeo Relacionado com Gene de Calcitonina , Ácidos Docosa-Hexaenoicos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Inflamação/metabolismo , Ativação de Macrófagos , Masculino , Camundongos , Neuroimunomodulação , Neurônios , Nociceptores/metabolismo , Dor , Ácido Úrico/química , Ácido Úrico/farmacologia
4.
Free Radic Res ; 55(7): 757-775, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34238089

RESUMO

The mechanistic interactions among redox status of leukocytes, muscle, and exercise in pain regulation are still poorly understood and limit targeted treatment. Exercise benefits are numerous, including the treatment of chronic pain. However, unaccustomed exercise may be reported as undesirable as it may contribute to pain. The aim of the present review is to evaluate the relationship between oxidative metabolism and acute exercise-induced pain, and as to whether improved antioxidant capacity underpins the analgesic effects of regular exercise. Preclinical and clinical studies addressing relevant topics on mechanisms by which exercise modulates the nociceptive activity and how redox status can outline pain and analgesia are discussed, in sense of translating into refined outcomes. Emerging evidence points to the role of oxidative stress-induced signaling in sensitizing nociceptor sensory neurons. In response to acute exercise, there is an increase in oxidative metabolism, and consequently, pain. Instead, regular exercise can modulate redox status in favor of antioxidant capacity and repair mechanisms, which have consequently increased resistance to oxidative stress, damage, and pain. Data indicate that acute sessions of unaccustomed prolonged and/or intense exercise increase oxidative metabolism and regulate exercise-induced pain in the post-exercise recovery period. Further, evidence demonstrates regular exercise improves antioxidant status, indicating its therapeutic utility for chronic pain disorders. An improved comprehension of the role of redox status in exercise can provide helpful insights into immune-muscle communication during pain modulatory effects of exercise and support new therapeutic efforts and rationale for the promotion of exercise.


Assuntos
Analgesia/efeitos adversos , Exercício Físico , Músculo Esquelético/patologia , Nociceptores/patologia , Estresse Oxidativo , Dor/patologia , Células Receptoras Sensoriais/patologia , Humanos , Músculo Esquelético/metabolismo , Nociceptores/imunologia , Nociceptores/metabolismo , Oxirredução , Dor/etiologia , Dor/metabolismo , Células Receptoras Sensoriais/imunologia , Células Receptoras Sensoriais/metabolismo
5.
Exp Brain Res ; 239(8): 2375-2397, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34101000

RESUMO

A previous study has indicated that during the state of central sensitization induced by the intradermic injection of capsaicin, there is a gradual facilitation of the dorsal horn neuronal responses produced by stimulation of the high-threshold articular afferents that is counteracted by a concurrent increase of descending inhibitory actions. Since these changes occurred without significantly affecting the responses produced by stimulation of the low-threshold articular afferents, it was suggested that the capsaicin-induced descending inhibition included a preferential presynaptic modulation of the synaptic efficacy of the slow conducting nociceptive joint afferents (Ramírez-Morales et al., Exp Brain Res 237:1629-1641, 2019). The present study was aimed to investigate more directly the contribution of presynaptic mechanisms in this descending control. We found that in the barbiturate anesthetized cat, stimulation of the high-threshold myelinated afferents in the posterior articular nerve (PAN) produces primary afferent hyperpolarization (PAH) in the slow conducting (25-35 m/s) and primary afferent depolarization (PAD) in the fast conducting (40-50 m/s) articular fibers. During the state of central sensitization induced by capsaicin, there is a supraspinally mediated shift of the autogenic PAH to PAD that takes place in the slow conducting fibers, basically without affecting the autogenic PAD generated in the fast conducting afferents. It is suggested that the change of presynaptic facilitation to presynaptic inhibition induced by capsaicin on the slow articular afferents is part of an homeostatic process aimed to keep the nociceptive-induced neuronal activity within manageable limits while preserving the proprioceptive information required for proper control of movement.


Assuntos
Nociceptividade , Células do Corno Posterior , Animais , Capsaicina/farmacologia , Gatos , Estimulação Elétrica , Neurônios Aferentes , Nociceptores , Propriocepção , Medula Espinal
6.
Fundam Clin Pharmacol ; 35(2): 364-370, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32979233

RESUMO

Dipyrone (DIP), also known as metamizole, is an over-the-counter analgesic used in Europe and Latin America. Evidence suggesting that inflammatory pain attenuation by DIP is associated with a direct impact on peripheral primary nociceptive neurons through the stimulation of nitric oxide signaling pathway. However, the molecular mechanism by which DIP activates this pathway remains unknown. The PI3Kγ/AKT signaling cascade activation is one of the well-known molecular mechanisms that promote nitric oxide production in sensory neurons. Herein, we investigated the role of the PI3Kγ/AKT signaling cascade in the context of peripheral analgesic effect of DIP. DIP was administered into PGE2 pre-sensitized paws of rats and mechanical hyperalgesia was determined using electronic von Frey test after 1 h. Nonselective or selective pharmacological inhibitors of PI3Kγ and AKT were also administered in DIP-treated rats under paws sensitized with PGE2. Intraplantar injection of DIP attenuated PGE2-induced hyperalgesia in a dose-dependent manner. Treatment with nonselective (wortmannin or LY294002) or selective (AS605240) pharmacological inhibitors of PI3Kγ reduced the peripheral antihypernociceptive effect of DIP. Consistently, AKT selective inhibitor also reversed analgesic DIP effects. Corroborating these data, we found that DIP induced AKT phosphorylation in cultured dorsal root ganglion neurons, which was prevented in the presence of PI3Kγ selective inhibitor. Taken together, these findings provide evidence that peripheral analgesic effect of DIP is dependent on the activation of PI3Kγ/AKT signaling pathway.


Assuntos
Analgésicos/farmacologia , Dipirona/farmacologia , Nociceptores/efeitos dos fármacos , Dor/prevenção & controle , Animais , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar
7.
Int J Dev Neurosci ; 80(4): 267-275, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32144810

RESUMO

The aim of this study was to determine whether maternal diabetes induced by alloxan injection in the first gestational day of female Wistar rats interferes with the development of the nociceptive peripheral system of the offspring. Behavioral and histologic analysis was performed using the adult offspring of diabetic and control rats. It was found that the offspring of diabetic rats were more sensitive to thermal stimulation and showed an altered response to carrageenan-induced inflammatory hyperalgesia. The histological analysis showed an increased proportion of nociceptive neurons, while the population of non-nociceptive myelinated neurons was reduced. Therefore, exposition to hyperglycemia and/or hyperinsulinemia in uterus, caused by a diabetic mother, might result in altered nociceptive sensations in the offspring throughout life.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Neuropatias Diabéticas/fisiopatologia , Nociceptividade , Animais , Carragenina , Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/patologia , Feminino , Gânglios Espinais/patologia , Temperatura Alta , Hiperalgesia/induzido quimicamente , Hiperalgesia/complicações , Masculino , Neurônios/patologia , Nociceptores , Medição da Dor , Estimulação Física , Gravidez , Ratos , Ratos Wistar
8.
Drug Res (Stuttg) ; 70(4): 145-150, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32000276

RESUMO

There are different animal models to evaluate pain among them the formalin hind paw assay which is widely used since some of its events appear to be similar to the clinical pain of humans. The assay in which a dilute solution of formalin is injected into the dorsal hindpaw of a murine produces two 'phases' of pain behavior separated by a inactive period. The early phase (Phase I) is probably due to direct activation of nociceptors and the second phase (Phase II) is due to ongoing inflammatory input and central sensitization. Mice were used to determine the potency antinociceptive of piroxicam (1,3,10,and 30 mg/kg), parecoxib (0.3, 1,3,10 and 30 mg/kg), dexketoprofen (3,10,30 and 100 mg/kg) and ketoprofen (3,10,30 and 100 mg/kg). Dose-response for each NSAIDs were created before and after 5 mg/kg of L-NAME i.p. or 5 mg/kg i.p. of 7-nitroindazole. A least-squares linear regression analysis of the log dose-response curves allowed the calculation of the dose that produced 50% of antinociception (ED50) for each drug. The ED50 demonstrated the following rank order of potency, in the phase I: piroxicam > dexketoprofen > ketoprofen > parecoxib and in the phase II: piroxicam > ketoprofen > parecoxib > dexketoprofen. Pretreatment of the mice with L-NAME or 7-nitroindazol induced a significant increase of the analgesic power of the NSAIDs, with a significant reduction of the ED50. It is suggested that NO may be involved in both phases of the trial, which means that nitric oxide regulates the bioactivity of NSAIDs.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Óxido Nítrico/metabolismo , Nociceptividade/efeitos dos fármacos , Dor/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Modelos Animais de Doenças , Formaldeído/toxicidade , Humanos , Indazóis/administração & dosagem , Masculino , Camundongos , NG-Nitroarginina Metil Éster/administração & dosagem , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Dor/induzido quimicamente , Dor/diagnóstico , Medição da Dor
9.
Neuroscience ; 416: 229-238, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31404587

RESUMO

Diabetes is a chronic degenerative disease that represent a major threat to public health worldwide. Once the disease is established, one of the major concerns about the diabetes complications is the development of neuropathy. This study established an experimental model that evaluates the effect of type 1 diabetes on nociceptive challenges in the temporomandibular joint (TMJ). Streptozotocin-induced type 1 (STZ 75 mg/Kg) diabetes inhibited the responsiveness of C-fibers nociceptors located in the TMJ of Wistar rats since seventh day after the disease induction. Diabetes-induced hyporesponsiveness of C-fibers nociceptors was associated with significantly reduction of protein level of neuropeptides Substance P and Calcitonin Gene Related Peptide. Diabetic animals pre-treated with Protein Kinase C (PKC)-α and -ß inhibitor (GO6976) or PKC-ß inhibitor (LY333531) significantly increased capsaicin-induced nociception in the TMJ higher protein levels of Na+/K+-ATPase pump in the trigeminal ganglia. On the other hand, although diabetes inhibits formalin-induced nociception higher protein levels of pro-inflammatory cytokine IL1-ß and chemokine CINC-1/CXCL-1 were observed. Overall, the results of the present work suggest that diabetes causes a hyporesponsiveness of C-fiber and a potentialization of the inflammatory response which may result in the degenerative process of periarticular tissues without pain perception.


Assuntos
Nociceptores/efeitos dos fármacos , Dor/fisiopatologia , Transtornos da Articulação Temporomandibular/fisiopatologia , Articulação Temporomandibular/efeitos dos fármacos , Animais , Capsaicina/farmacologia , Diabetes Mellitus Tipo 1/fisiopatologia , Masculino , Nociceptividade/efeitos dos fármacos , Medição da Dor/métodos , Ratos Wistar , Estreptozocina/farmacologia
10.
Neuroscience ; 417: 81-94, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31430528

RESUMO

Intrathecal (i.t.) administration of quinpirole, a dopamine (DA) D2-like receptor agonist, produces antinociception to mechanonociceptive stimuli but not to thermonociceptive stimuli. To determine a cellular mechanism for the specific antinociceptive effect of D2-like receptor activation on mechanonociception, we evaluated the effect of quinpirole on voltage-gated Ca2+ influx in cultured dorsal root ganglion (DRG) neurons and the D2 DA receptor distribution in subpopulations of rat nociceptive DRG neurons. Small-diameter DRG neurons were classified into IB4+ (nonpeptidergic) and IB4- (peptidergic). Intracellular [Ca2+] microfluorometry and voltage-clamp experiments showed that quinpirole reduced Ca2+ influx and inhibited the high voltage-activated Ca2+ current (HVA-ICa) in half of IB4+ neurons, leaving Ca2+ entry and HVA-ICa in IB4- neurons nearly unaffected. Pretreatment with ω-conotoxin MVIIA prevented the effect of quinpirole on HVA-ICa from IB4+ neurons, indicating that quinpirole mainly inhibits CaV2.2 channels. Immunofluorescence experiments showed that D2 DA receptor was present mainly in IB4+ small DRG neurons. Finally, in behavioral experiments in rats, the clinically approved D2-like receptor agonist pramipexole produced spinal antinociception in a similar fashion to quinpirole, with a significant effect only in the mechanonociceptive test. Our results explain, at least in part, why D2-like receptor agonists produce antinociception on mechanonociceptors.


Assuntos
Nociceptividade/efeitos dos fármacos , Nociceptividade/fisiologia , Receptores de Dopamina D2/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiologia , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Cálcio/metabolismo , Cálcio/fisiologia , Agonistas de Dopamina/farmacologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiologia , Masculino , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Nociceptores/fisiologia , Pramipexol/farmacologia , Quimpirol/farmacologia , Ratos , Ratos Wistar , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA