Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Elife ; 122024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39163103

RESUMO

Revealing unknown cues that regulate oligodendrocyte progenitor cell (OPC) function in remyelination is important to optimise the development of regenerative therapies for multiple sclerosis (MS). Platelets are present in chronic non-remyelinated lesions of MS and an increase in circulating platelets has been described in experimental autoimmune encephalomyelitis (EAE) mice, an animal model for MS. However, the contribution of platelets to remyelination remains unexplored. Here we show platelet aggregation in proximity to OPCs in areas of experimental demyelination. Partial depletion of circulating platelets impaired OPC differentiation and remyelination, without altering blood-brain barrier stability and neuroinflammation. Transient exposure to platelets enhanced OPC differentiation in vitro, whereas sustained exposure suppressed this effect. In a mouse model of thrombocytosis (Calr+/-), there was a sustained increase in platelet aggregation together with a reduction of newly-generated oligodendrocytes following toxin-induced demyelination. These findings reveal a complex bimodal contribution of platelet to remyelination and provide insights into remyelination failure in MS.


Assuntos
Plaquetas , Diferenciação Celular , Células Precursoras de Oligodendrócitos , Remielinização , Animais , Células Precursoras de Oligodendrócitos/fisiologia , Remielinização/fisiologia , Camundongos , Plaquetas/fisiologia , Encefalomielite Autoimune Experimental/patologia , Camundongos Endogâmicos C57BL , Esclerose Múltipla/patologia , Modelos Animais de Doenças , Oligodendroglia/fisiologia , Feminino
2.
Neurotox Res ; 42(4): 33, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963434

RESUMO

The white matter is an important constituent of the central nervous system, containing axons, oligodendrocytes, and its progenitor cells, astrocytes, and microglial cells. Oligodendrocytes are central for myelin synthesis, the insulating envelope that protects axons and allows normal neural conduction. Both, oligodendrocytes and myelin, are highly vulnerable to toxic factors in many neurodevelopmental and neurodegenerative disorders associated with disturbances of myelination. Here we review the main alterations in oligodendrocytes and myelin observed in some organic acidurias/acidemias, which correspond to inherited neurometabolic disorders biochemically characterized by accumulation of potentially neurotoxic organic acids and their derivatives. The yet incompletely understood mechanisms underlying the high vulnerability of OLs and/or myelin in glutaric acidemia type I, the most prototypical cerebral organic aciduria, are particularly discussed.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Encefalopatias Metabólicas , Glutaril-CoA Desidrogenase , Oligodendroglia , Substância Branca , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Glutaril-CoA Desidrogenase/deficiência , Glutaril-CoA Desidrogenase/metabolismo , Humanos , Animais , Substância Branca/patologia , Substância Branca/metabolismo , Encefalopatias Metabólicas/patologia , Encefalopatias Metabólicas/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia
3.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791505

RESUMO

In contrast to the hypothesis that aging results from cell-autonomous deterioration processes, the programmed longevity theory proposes that aging arises from a partial inactivation of a "longevity program" aimed at maintaining youthfulness in organisms. Supporting this hypothesis, age-related changes in organisms can be reversed by factors circulating in young blood. Concordantly, the endocrine secretion of exosomal microRNAs (miRNAs) by hypothalamic neural stem cells (htNSCs) regulates the aging rate by enhancing physiological fitness in young animals. However, the specific molecular mechanisms through which hypothalamic-derived miRNAs exert their anti-aging effects remain unexplored. Using experimentally validated miRNA-target gene interactions and single-cell transcriptomic data of brain cells during aging and heterochronic parabiosis, we identify the main pathways controlled by these miRNAs and the cell-type-specific gene networks that are altered due to age-related loss of htNSCs and the subsequent decline in specific miRNA levels in the cerebrospinal fluid (CSF). Our bioinformatics analysis suggests that these miRNAs modulate pathways associated with senescence and cellular stress response, targeting crucial genes such as Cdkn2a, Rps27, and Txnip. The oligodendrocyte lineage appears to be the most responsive to age-dependent loss of exosomal miRNA, leading to significant derepression of several miRNA target genes. Furthermore, heterochronic parabiosis can reverse age-related upregulation of specific miRNA-targeted genes, predominantly in brain endothelial cells, including senescence promoting genes such as Cdkn1a and Btg2. Our findings support the presence of an anti-senescence mechanism triggered by the endocrine secretion of htNSC-derived exosomal miRNAs, which is associated with a youthful transcriptional signature.


Assuntos
Envelhecimento , Exossomos , Hipotálamo , MicroRNAs , Células-Tronco Neurais , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Exossomos/metabolismo , Hipotálamo/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Redes Reguladoras de Genes , Senescência Celular/genética , Encéfalo/metabolismo , Camundongos , Parabiose , Oligodendroglia/metabolismo , Transcriptoma , Regulação da Expressão Gênica , Perfilação da Expressão Gênica
4.
J Neurosci Res ; 102(4): e25334, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656648

RESUMO

Iron deficiency (ID) has been shown to affect central nervous system (CNS) development and induce hypomyelination. Previous work from our laboratory in a gestational ID model showed that both oligodendrocyte (OLG) and astrocyte (AST) maturation was impaired. To explore the contribution of AST iron to the myelination process, we generated an in vitro ID model by silencing divalent metal transporter 1 (DMT1) in AST (siDMT1 AST) or treating AST with Fe3+ chelator deferoxamine (DFX; DFX AST). siDMT1 AST showed no changes in proliferation but remained immature. Co-cultures of oligodendrocyte precursors cells (OPC) with siDMT1 AST and OPC cultures incubated with siDMT1 AST-conditioned media (ACM) rendered a reduction in OPC maturation. These findings correlated with a decrease in the expression of AST-secreted factors IGF-1, NRG-1, and LIF, known to promote OPC differentiation. siDMT1 AST also displayed increased mitochondrial number and reduced mitochondrial size as compared to control cells. DFX AST also remained immature and DFX AST-conditioned media also hampered OPC maturation in culture, in keeping with a decrease in the expression of AST-secreted growth factors IGF-1, NRG-1, LIF, and CNTF. DFX AST mitochondrial morphology and number showed results similar to those observed in siDMT1 AST. In sum, our results show that ID, induced through two different methods, impacts AST maturation and mitochondrial functioning, which in turn hampers OPC differentiation.


Assuntos
Astrócitos , Diferenciação Celular , Deficiências de Ferro , Oligodendroglia , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Proteínas de Transporte de Cátions/metabolismo , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Ratos , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/metabolismo , Desferroxamina/farmacologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Ferro/metabolismo
5.
Glia ; 72(2): 338-361, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37860913

RESUMO

Extracellular vesicles (EVs) are involved in diverse cellular functions, playing a significant role in cell-to-cell communication in both physiological conditions and pathological scenarios. Therefore, EVs represent a promising therapeutic strategy. Oligodendrocytes (OLs) are myelinating glial cells developed from oligodendrocyte progenitor cells (OPCs) and damaged in chronic demyelinating diseases such as multiple sclerosis (MS). Glycoprotein transferrin (Tf) plays a critical role in iron homeostasis and has pro-differentiating effects on OLs in vivo and in vitro. In the current work, we evaluated the use of EVs as transporters of Tf to the central nervous system (CNS) through the intranasal (IN) route. For the in vitro mechanistic studies, we used rat plasma EVs. Our results show that EVTf enter OPCs through clathrin-caveolae and cholesterol-rich lipid raft endocytic pathways, releasing the cargo and exerting a pro-maturation effect on OPCs. These effects were also observed in vivo using the animal model of demyelination induced by cuprizone (CPZ). In this model, IN administered Tf-loaded EVs isolated from mouse plasma reached the brain parenchyma, internalizing into OPCs, promoting their differentiation, and accelerating remyelination. Furthermore, in vivo experiments demonstrated that EVs protected the Tf cargo and significantly reduced the amount of Tf required to induce remyelination as compared to soluble Tf. Collectively, these findings unveil EVs as functional nanocarriers of Tf to induce remyelination.


Assuntos
Doenças Desmielinizantes , Vesículas Extracelulares , Camundongos , Ratos , Animais , Transferrina/metabolismo , Doenças Desmielinizantes/patologia , Oligodendroglia/metabolismo , Encéfalo/metabolismo , Diferenciação Celular/fisiologia , Cuprizona/toxicidade , Vesículas Extracelulares/metabolismo , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo
6.
Mol Cell Neurosci ; 126: 103864, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37268283

RESUMO

Oxygen deprivation is one of the main causes of morbidity and mortality in newborns, occurring with a higher prevalence in preterm infants, reaching 20 % to 50 % mortality in newborns in the perinatal period. When they survive, 25 % exhibit neuropsychological pathologies, such as learning difficulties, epilepsy, and cerebral palsy. White matter injury is one of the main features found in oxygen deprivation injury, which can lead to long-term functional impairments, including cognitive delay and motor deficits. The myelin sheath accounts for much of the white matter in the brain by surrounding axons and enabling the efficient conduction of action potentials. Mature oligodendrocytes, which synthesize and maintain myelination, also comprise a significant proportion of the brain's white matter. In recent years, oligodendrocytes and the myelination process have become potential therapeutic targets to minimize the effects of oxygen deprivation on the central nervous system. Moreover, evidence indicate that neuroinflammation and apoptotic pathways activated during oxygen deprivation may be influenced by sexual dimorphism. To summarize the most recent research about the impact of sexual dimorphism on the neuroinflammatory state and white matter injury after oxygen deprivation, this review presents an overview of the oligodendrocyte lineage development and myelination, the impact of oxygen deprivation and neuroinflammation on oligodendrocytes in neurodevelopmental disorders, and recent reports about sexual dimorphism regarding the neuroinflammation and white matter injury after neonatal oxygen deprivation.


Assuntos
Lesões Encefálicas , Substância Branca , Recém-Nascido , Humanos , Gravidez , Feminino , Oxigênio/metabolismo , Doenças Neuroinflamatórias , Recém-Nascido Prematuro , Bainha de Mielina/metabolismo , Encéfalo/metabolismo , Oligodendroglia/metabolismo , Substância Branca/metabolismo , Lesões Encefálicas/metabolismo
7.
BMC Complement Med Ther ; 23(1): 154, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170258

RESUMO

BACKGROUND: Stroke is a leading cause of death and disability worldwide. A major factor in brain damage following ischemia is excitotoxicity caused by elevated levels of the neurotransmitter glutamate. In the brain, glutamate homeostasis is a primary function of astrocytes. Amburana cearensis has long been used in folk medicine and seed extract obtained with dichloromethane (EDAC) have previously been shown to exhibit cytoprotective activity in vitro. The aim of the present study was to analyse the activity of EDAC in hippocampal brain slices. METHODS: We prepared a dichloromethane extract (EDAC) from A. cearensis seeds and characterized the chemical constituents by 1H and 13C-NMR. Hippocampal slices from P6-8 or P90 Wistar rats were used for cell viability assay or glutamate uptake test. Hippocampal slices from P10-12 transgenic mice SOX10-EGFP and GFAP-EGFP and immunofluorescence for GS, GLAST and GLT1 were used to study oligodendrocytes and astrocytes. RESULTS: Astrocytes play a critical role in glutamate homeostasis and we provide immunohistochemical evidence that in excitotoxicity EDAC increased expression of glutamate transporters and glutamine synthetase, which is essential for detoxifying glutamate. Next, we directly examined astrocytes using transgenic mice in which glial fibrillary acidic protein (GFAP) drives expression of enhanced green fluorescence protein (EGFP) and show that glutamate excitotoxicity caused a decrease in GFAP-EGFP and that EDAC protected against this loss. This was examined further in the oxygen-glucose deprivation (OGD) model of ischemia, where EDAC caused an increase in astrocytic process branching, resulting in an increase in GFAP-EGFP. Using SOX10-EGFP reporter mice, we show that the acute response of oligodendrocytes to OGD in hippocampal slices is a marked loss of their processes and EDAC protected oligodendrocytes against this damage. CONCLUSION: This study provides evidence that EDAC is cytoprotective against ischemia and glutamate excitotoxicity by modulating astrocyte responses and stimulating their glutamate homeostatic mechanisms.


Assuntos
Astrócitos , Ácido Glutâmico , Ratos , Camundongos , Animais , Ácido Glutâmico/metabolismo , Ratos Wistar , Cloreto de Metileno/metabolismo , Hipocampo/metabolismo , Isquemia/metabolismo , Camundongos Transgênicos , Oxigênio/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Homeostase , Oligodendroglia/metabolismo , Sementes
8.
Int J Dev Neurosci ; 83(3): 274-296, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37073624

RESUMO

Ultrastructural features of striatal white matter and cells in an in vivo model of glutaric acidemia type I created by intracerebral injection of glutaric acid (GA) were analyzed by transmission electron microscopy and immunohistochemistry. To test if the white matter damage observed in this model could be prevented, we administered the synthetic chemopreventive molecule CH38 ((E)-3-(4-methylthiophenyl)-1-phenyl-2-propen-1-one) to newborn rats, previous to an intracerebroventricular injection of GA. The study was done when striatal myelination was incipient and when it was already established (at 12 and 45 days post-injection [DPI], respectively). Results obtained indicate that that the ultrastructure of astrocytes and neurons did not appear significantly affected by the GA bolus. Instead, in oligodendrocytes, the most prominent GA-dependent injury defects included endoplasmic reticulum (ER) stress and nuclear envelope swelling at 12 DPI. Altered and reduced immunoreactivities against heavy neurofilament (NF), proteolipid protein (PLP), and myelin-associated glycoprotein (MAG) together with axonal bundle fragmentation and decreased myelin were also found at both ages analyzed. CH38 by itself did not affect striatal cells or axonal packages. However, the group of rats that received CH38 before GA did not show evidence neither of ER stress nor nuclear envelope dilation in oligodendrocytes, and axonal bundles appeared less fragmented. In this group, labeling of NF and PLP was similar to the controls. These results suggest that the CH38 molecule is a candidate drug to prevent or decrease the neural damage elicited by a pathological increase of GA in the brain. Optimization of the treatments and identification of the mechanisms underlying CH38 protective effects will open new therapeutic windows to protect myelin, which is a vulnerable target of numerous nervous system diseases.


Assuntos
Chalconas , Bainha de Mielina , Ratos , Animais , Bainha de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Chalconas/metabolismo , Chalconas/farmacologia , Neurônios/metabolismo , Axônios/metabolismo , Oligodendroglia/metabolismo
9.
Neurobiol Aging ; 127: 70-81, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37116408

RESUMO

Myelin sheath is a structure in neurons fabricated by oligodendrocytes and Schwann cells responsible for increasing the efficiency of neural synapsis, impulse transmission, and providing metabolic support to the axon. They present morpho-functional changes during health aging as deformities of the sheath and its fragmentation, causing an increased load on microglial phagocytosis, with Alzheimer's disease aggravating. Physical exercise has been studied as a possible protective agent for the nervous system, offering benefits to neuroplasticity. In this regard, studies in animal models for Alzheimer's and depression reported the efficiency of physical exercise in protecting against myelin degeneration. A reduction of myelin damage during aging has also been observed in healthy humans. Physical activity promotes oligodendrocyte proliferation and myelin preservation during old age, although some controversies remain. In this review, we will address how effective physical exercise can be as a protective agent of the myelin sheath against the effects of aging in physiological and pathological conditions.


Assuntos
Axônios , Bainha de Mielina , Animais , Humanos , Bainha de Mielina/metabolismo , Axônios/fisiologia , Oligodendroglia/patologia , Neurônios/metabolismo , Envelhecimento/metabolismo
10.
Exp Neurol ; 365: 114412, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37075967

RESUMO

Normal pressure hydrocephalus (NPH) compromises the morphology of the corpus callosum (CC). This study aims to determine whether 60- or 120-day NPH disrupts the cytoarchitecture and functioning of white matter (WM) and oligodendrocyte precursor cells (OPCs) and establish whether these changes are reversible after hydrocephalus treatment. NPH was induced in CD1 adult mice by inserting an obstructive lamina in the atrium of the aqueduct of Sylvius. Five groups were assembled: sham-operated controls (60 and 120 days), NPH groups (60 and 120 days), and the hydrocephalus-treated group (obstruction removal after 60-d hydrocephalus). We analyzed the cellular integrity of the CC by immunohistochemistry, TUNEL analysis, Western blot assays, and transmission electron microscopy (TEM). We found a reduction in the width of the CC at 60 and 120 days of NPH. TEM analysis demonstrated myelin abnormalities, degenerative changes in the WM, and an increase in the number of hyperdense (dark) axons that were associated with significant astrogliosis, and microglial reactivity. Hydrocephalus also caused a decrease in the expression of myelin-related proteins (MOG and CNPase) and reduced proliferation and population of OPCs, resulting in fewer mature oligodendrocytes. Hydrocephalus resolution only recovers the OPC proliferation and MOG protein density, but the rest of the WM abnormalities persisted. Interestingly, all these cellular and molecular anomalies occur in the absence of behavioral changes. The results suggest that NPH severely disrupts the myelin integrity and affects the OPC turnover in the CC. Remarkably, most of these deleterious events persist after hydrocephalus treatment, which suggests that a late treatment conveys irreversible changes in the WM of CC.


Assuntos
Hidrocefalia de Pressão Normal , Células Precursoras de Oligodendrócitos , Camundongos , Animais , Corpo Caloso , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/genética , Bainha de Mielina , Oligodendroglia , Proteínas da Mielina , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA