Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Arch Environ Contam Toxicol ; 87(2): 105-113, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39088044

RESUMO

Wetlands play a crucial role in providing valuable ecosystem services, including the removal of various pollutants. In agricultural basins, wetlands are exposed to agrochemical loads. This study aims to assess the attenuation effect of the ubiquitous macrophyte Azolla spp. on the toxicity of lambda-cyhalothrin to sensitive aquatic organisms. An indoor mesocosm experiment was conducted to compare the concentration of lambda-cyhalothrin at different time points after pesticide application in vegetated and unvegetated treatments, including a control without pesticide addition. Toxicity tests were performed throughout the experiment on three organisms: a fish (Cnesterodon decemmaculatus), a macroinvertebrate (Hyalella curvispina), and an amphibian (Boana pulchella). The results demonstrated that lambda-cyhalothrin concentration and toxicity in water were significantly lower in the Azolla spp. treatment. Furthermore, the half-life of lambda-cyhalothrin decreased from 1.2 days in the unvegetated treatment to 0.4 days in the vegetated treatment. The vegetated treatment also resulted in a significantly lower mortality rate for both H. curvispina and C. decemmaculatus. However, no mortality was observed in B. pulchella for any of the treatments. Sublethal effects were observed in this organism, such as lateral bending of the tail and impairment of the ability to swim, which were attenuated in the vegetated treatment. We conclude that Azolla spp. can effectively reduce the concentration and toxicity of lambda-cyhalothrin, suggesting its potential use in farm-scale best management practices to mitigate the effects of pesticide loads from adjacent crops.


Assuntos
Organismos Aquáticos , Nitrilas , Piretrinas , Poluentes Químicos da Água , Piretrinas/toxicidade , Nitrilas/toxicidade , Animais , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Áreas Alagadas , Inseticidas/toxicidade , Peixes/fisiologia , Anfípodes/efeitos dos fármacos , Anfípodes/fisiologia
2.
Environ Toxicol Pharmacol ; 110: 104502, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002617

RESUMO

Pharmaceutical active compounds (PhACs) are detected pollutants in aquatic environments worldwide at concentrations ranging from ng L-1 to µg L-1. Currently, PhAC monitoring is poorly realized in Mexico. This study proposes a priority list of PhACs in Mexican aquatic environments, considering their occurrence and environmental and human health risks. Ecological risks were assessed as Risk Quotients (RQ) values using the PhAC concentrations detected in surface water, obtaining high risks (RQ > 1) against aquatic organisms, especially of naproxen, ibuprofen, diclofenac, acetaminophen, 17ß-estradiol, carbamazepine, ketoprofen, caffeine. In contrast, potential human health risks (RQH) were assessed on the Mexican population using the concentrations quantified in groundwater, demonstrating potential risks (RQH > 0.2) on the population, particularly of DCF and CBZ. Thus, a priority list of PhACs can be used as a reference for environmental monitoring in Mexican water supplies as well as PhACs monitoring in countries of the Caribbean region and Central America.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , México , Humanos , Medição de Risco , Preparações Farmacêuticas/análise , Organismos Aquáticos/efeitos dos fármacos , Água Subterrânea/análise , Água Subterrânea/química , Animais
3.
Environ Pollut ; 357: 124459, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38942275

RESUMO

Imidacloprid is a neonicotinoid insecticide that has received particular attention due to its widespread use and potential adverse effects for aquatic and terrestrial ecosystems. Its toxicity to aquatic organisms has been evaluated in central and southern Europe as well as in (sub-)tropical regions of Africa and Asia, showing high toxic potential for some aquatic insects and zooplankton taxa. However, its toxicity to aquatic organisms representative of tropical regions of Latin America has never been evaluated. To fill this knowledge gap, we carried out a mesocosm experiment to assess the short- and long-term effects of imidacloprid on freshwater invertebrate communities representative of the Ecuadorian Amazon. A mesocosm experiment was conducted with five weekly applications of imidacloprid at four nominal concentrations (0.01 µg/L, 0.1 µg/L, 1 µg/L and 10 µg/L). Toxic effects were evaluated on zooplankton and macroinvertebrate populations and communities, as well as on water quality parameters for 70 days. Given the climatic conditions prevailing in the study area, characterized by a high solar radiation and abundant rainfall that resulted in mesocosm overflow, there was a rapid dissipation of the test compound from the water column (half-life: 4 days). The macroinvertebrate taxa Callibaetis pictus (Ephemeroptera), Chironomus sp. (Diptera), and the zooplankton taxon Macrocyclops sp., showed population declines caused by the imidacloprid treatment, with a 21-d Time Weighted Average No Observed Effect Concentrations (21-d TWA NOEC) of 0.46 µg/L, except for C. pictus which presented a 21-d TWA NOEC of 0.05 µg/L. In general terms, the sensitivity of these taxa to imidacloprid was greater than that reported for surrogate taxa in temperate zones and similar to that reported in other (sub-)tropical regions. These results confirm the high sensitivity of tropical aquatic invertebrates to this compound and suggest the need to establish regulations for the control of imidacloprid contamination in Amazonian freshwater ecosystems.


Assuntos
Organismos Aquáticos , Inseticidas , Invertebrados , Neonicotinoides , Nitrocompostos , Poluentes Químicos da Água , Neonicotinoides/toxicidade , Animais , Nitrocompostos/toxicidade , Inseticidas/toxicidade , Poluentes Químicos da Água/toxicidade , Invertebrados/efeitos dos fármacos , Equador , Organismos Aquáticos/efeitos dos fármacos , Monitoramento Ambiental , Zooplâncton/efeitos dos fármacos , Ecossistema
4.
Water Environ Res ; 96(6): e11065, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895814

RESUMO

Wastewater containing tetrabromobisphenol A (TBBPA), a commonly used flame retardant found in wastewater, can present significant toxic effects on biota, yet its impact on tropical freshwater environments is not well understood. This study explores the effectiveness of two independent anaerobic treatment systems, the acidogenic reactor (AR) and the methanogenic reactor (MR), for the ecotoxicity reduction of TBBPA-rich wastewater in four tropical freshwater species. Despite presenting good physicochemical performance and reduced toxicity of the influent for most species, AR and MR treatments remain acute and chronic toxicity. Overall, MR exhibited greater efficacy in reducing influent toxicity compared with AR. TBBPA bioaccumulation was observed in Chironomus sancticaroli after short-term exposure to 100% MR effluent. Multigenerational exposures highlighted changes in the wing length of C. sancticaroli, showing decreases after influent and AR exposures and increases after MR exposures. These findings underscore the need for ecotoxicological tools in studies of new treatment technologies, combining the removal of emerging contaminants with safeguarding aquatic biota. PRACTITIONER POINTS: Acidogenic and methanogenic reactors reduced the acute and chronic toxicity of wastewater containing tetrabromobisphenol A. Both treatments still exhibit toxicity, inducing short- and long-term toxic effects on four native tropical species. The aquatic species Pristina longiseta was most sensitive to effluents from acidogenic and methanogenic reactors. TBBPA concentrations recovered from Chironomus sancticaroli bioaccumulation analysis ranged from 1.07 to 1.35 µg g-1. Evaluating new treatment technologies with multiple species bioassays is essential for a comprehensive effluent toxicity assessment and ensuring aquatic safety.


Assuntos
Bifenil Polibromatos , Poluentes Químicos da Água , Animais , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Anaerobiose , Águas Residuárias/química , Biota , Retardadores de Chama/toxicidade , Retardadores de Chama/metabolismo , Eliminação de Resíduos Líquidos/métodos , Chironomidae/efeitos dos fármacos , Chironomidae/metabolismo , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/metabolismo
5.
Food Chem Toxicol ; 189: 114749, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38768938

RESUMO

Emodin is an anthraquinone secondary metabolite produced by several species of plants and fungi. Emodin is known for its pharmacological versatility, and, in the textile industry, for its good dyeing properties. However, its use in the textile industry can result in the formation and disposal of large volumes of wastewater. Emodin mutagenicity has been shown in bacteria and in human cells, but little is known about its possible toxic, genotoxic, or mutagenic effects in aquatic organisms. We have evaluated the eco/genotoxicity of emodin to aquatic organisms. Emodin was toxic to Daphnia similis (EC50 = 130 µg L-1) and zebrafish embryos (LC50 = 25 µg L-1). No toxicity was observed for Raphidocelis subcapitata, Ceriodaphnia dubia, or Parhyale hawaiensis. Additional biochemistry/molecular studies are needed to elucidate the toxic/mutagenic pathways of emodin in aquatic organisms. The PNEC value for emodin was 0.025 µg L-1. In addition to mutagenicity in the Salmonella/microsome assay, emodin was mutagenic in the micronucleus assay in the amphipod P. hawaiensis. Among the anthraquinone dyes tested to date, natural or synthetic, emodin was the most toxic to aquatic species.


Assuntos
Corantes , Daphnia , Emodina , Testes de Mutagenicidade , Poluentes Químicos da Água , Peixe-Zebra , Emodina/toxicidade , Emodina/análogos & derivados , Animais , Corantes/toxicidade , Daphnia/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Mutagênicos/toxicidade , Testes para Micronúcleos , Antraquinonas/toxicidade , Antraquinonas/química , Embrião não Mamífero/efeitos dos fármacos
6.
Aquat Toxicol ; 271: 106931, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718520

RESUMO

Numerous studies evaluate chemical contaminants released by human activities and their effects on biota and aquatic ecosystems. However, few of these studies address non-toxic agents and their potentially harmful effects, which, in a concealed manner, culminate in an increased ecotoxicological risk for aquatic life and public health. This study investigated the presence of toxic and non-toxic pollutants in one of the main watersheds in Northeast Brazil (Rio São Francisco) and proposed a model of dispersion and transfer of resistance among the analyzed bacteria, also assessing the health risks of individuals and aquatic organisms present there. The results are worrying because although most toxic parameters, including physical-chemical and chromatographic aspects, comply with Brazilian environmental standards, non-toxic (microbiological) parameters do not. This research reveals the circulation of pathogens in several points of this hydrographic basin, highlighting the hidden ecotoxicological potential of an aquatic environment considered unaffected by the usual patterns of toxic parameters.


Assuntos
Ecotoxicologia , Monitoramento Ambiental , Poluentes Químicos da Água , Brasil , Poluentes Químicos da Água/toxicidade , Medição de Risco , Bactérias/efeitos dos fármacos , Animais , Organismos Aquáticos/efeitos dos fármacos , Rios/química
7.
Integr Environ Assess Manag ; 20(5): 1514-1528, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38629463

RESUMO

Aquatic risk assessment is essential to guarantee the sustainable use of pesticides and the conservation of water resources near agricultural fields. This article discusses a proposal for a tiered regulatory framework for the aquatic risk assessment of pesticides in Brazil. The first step is problem formulation, which includes establishing general and specific protection goals. In the exposure assessment, the Estimated Environmental Concentrations in water should be calculated based on realistic worst-case assumptions regarding application rate and frequency, the entry into the edge-of-field water body, and fate in the water body, using scenario-dependent models suggested by the Brazilian Environmental Agency. These calculations can be refined by including Efate studies with variable exposures to reflect realistic environmental conditions accurately and include mitigation measures that impact the modeling. In the hazard assessment, ecotoxicological data for toxicity to fish, aquatic invertebrates, algae, and aquatic plants should be required for all pesticides based on standardized protocols and species. Tier 2 has several refinement options, including incorporating toxicity data from additional test species and effect modeling. In Tier 3, population- and community-level effects are evaluated using semi-field studies. Considering the case study in Brazil, Tier 1 demonstrated that, from the 12 pesticides that were assessed, seven (58%) failed based on the value of the Risk Quotient. In Tier 2, when exposure refinement options and mitigation measures such as buffer zones are considered, all seven pesticides, for which Tier 1 indicated risk, still failed the assessment. The risk for four of these seven pesticides could be refined by considering toxicity information from additional species. Refinement options and mitigation measures that could be applied to the agricultural scenario in Brazil were discussed. In conclusion, the proposed tiered risk assessment is a feasible way to evaluate whether a pesticide will pose an unacceptable risk to aquatic organisms. Integr Environ Assess Manag 2024;20:1514-1528. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Monitoramento Ambiental , Praguicidas , Poluentes Químicos da Água , Medição de Risco/métodos , Praguicidas/toxicidade , Brasil , Poluentes Químicos da Água/toxicidade , Monitoramento Ambiental/métodos , Animais , Organismos Aquáticos/efeitos dos fármacos , Agricultura , Política Ambiental , Ecotoxicologia
8.
Sci Total Environ ; 931: 172860, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38688377

RESUMO

The intensive use of pesticides in Mexican agriculture has contributed significantly to the increase in food production, but at the same time represents potential risk to biota. This situation creates a dilemma between the need to increase food production and the preservation of the environment and human health. Aquatic invertebrates play a vital role in the balance of aquatic ecosystems but are sensitive to pesticides contamination. The sensitivity of aquatic invertebrates to pesticides contamination has led them to be used to assess the potential impact of this contamination on aquatic ecosystems. In the present study, conducted in the Ayuquila-Armería basin, the following aims were achieved: 1) quantifying the presence of 20 pesticides in river sediments, 2) assessing the spatiotemporal distribution of pesticides in river sediments, 3) determining the potential risk to aquatic invertebrates, and 4) prioritizing pesticides based on their potential risk. Twelve pesticides were consistently quantified in 192 river sediments samples. The pesticides with the highest concentrations were ametrine, malathion and picloram. The temporal analysis showed seasonality in pesticide concentrations, with higher detection frequencies during the wet season. The risk assessment showed that aquatic invertebrates may be affected by the concentrations of carbofuran, malathion, diazinon and ametrine. Pesticides prioritization identified ametrine, carbofuran, and diazinon as major concerns based on the methodology that considers the Frequency and Extent of Exceedance. This study provides valuable insights into the current pesticides scenario in the Ayuquila-Armería River sediments. The findings underscore the need for sustainable alternatives to mitigate the ecological risks associated with pesticides contamination in this aquatic ecosystem.


Assuntos
Organismos Aquáticos , Monitoramento Ambiental , Sedimentos Geológicos , Invertebrados , Praguicidas , Rios , Poluentes Químicos da Água , México , Praguicidas/análise , Invertebrados/efeitos dos fármacos , Rios/química , Medição de Risco , Poluentes Químicos da Água/análise , Animais , Sedimentos Geológicos/química , Organismos Aquáticos/efeitos dos fármacos , Análise Espaço-Temporal
9.
J Appl Toxicol ; 42(1): 73-86, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34101210

RESUMO

Ethylhexyl methoxycinnamate (EHMC) (CAS number: 5466-77-3) and butyl methoxydibenzoylmethane (BMDM) (CAS number: 70356-09-1) are important sunscreens. However, frequent application of large amounts of these compounds may reflect serious environmental impact, once it enters the environment through indirect release via wastewater treatment or immediate release during water activities. In this article, we reviewed the toxicological effects of EHMC and BMDM on aquatic ecosystems and the human consequences. According to the literature, EHMC and BMDM have been detected in water samples and sediments worldwide. Consequently, these compounds are also present in several marine organisms like fish, invertebrates, coral reefs, marine mammals, and other species, due to its bioaccumulation potential. Studies show that these chemicals are capable of damaging the aquatic beings in different ways. Further, bioaccumulation studies have shown that EHMC biomagnifies through trophic levels, which makes human seafood consumption a concern because the higher position in the trophic chain, the more elevate levels of ultraviolet (UV) filters are detected, and it is established that EHMC present adverse effects on the human organism. In contrast, there are no studies on the BMDM bioaccumulation and biomagnification potential. Different strategies can be adopted to avoid the damage caused by sunscreens in the environment and human organism. Two of them include the use of natural photoprotectors, such as polyphenols, in association with UV filters in sunscreens and the development of new and safer UV filters. Overall, this review shows the importance of studying the impacts of sunscreens in nature and developing safer sunscreens and formulations to safeguard marine fauna, ecosystems, and humans.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Cinamatos/toxicidade , Peixes , Invertebrados/efeitos dos fármacos , Propiofenonas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA