Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz J Microbiol ; 54(4): 3073-3083, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37702923

RESUMO

Rhizosphere soil of aromatic rice inhabits different fungal species that produce many bioactive metabolites including 2-acetyl-1-pyrroline (2AP). The mechanism for the biosynthesis of 2AP in the fungal system is still elusive. Hence, the present study investigates the role of possible nitrogen (N) precursors such as some amino acids and polyamines as well as the enzymes involved in 2AP synthesis in the fungal species isolated from the rhizosphere of aromatic rice varieties. Three fungal isolates were found to synthesize 2AP (0.32-1.07 ppm) and maximum 2AP was synthesized by Aspergillus niger (1.07 ppm) isolated from rhizosphere of Dehradun Basmati (DB). To determine the N source for 2AP synthesis, various N sources such as proline, glutamate, ornithine putrescine, spermine, and spermidine were used in place of putrescine in the synthetic medium (Syn18). The results showed that maximum 2AP synthesis was found with putrescine (1.07 ppm) followed by spermidine (0.89 ppm) and spermine (0.84 ppm). Further, LC-QTOF-MS analysis revealed the mobilization of spermine and spermidine into the putrescine, indicating that putrescine is the key N source for 2AP synthesis. Moreover, higher enzyme activity of DAO, PAO, and ODC as well as higher content of methylglyoxal metabolite in the A. niger NFCCI 5060 as compared to A. niger NFCCI 4064 (control) suggests the prominent role of these enzymes in the synthesis of 2AP. In conclusion, this study showed evidence of the polyamines mediated 2AP biosynthesis in A. niger NFCCI 5060.


Assuntos
Oryza , Poliaminas , Poliaminas/metabolismo , Espermidina/metabolismo , Putrescina/metabolismo , Espermina/metabolismo , Aspergillus niger/genética , Aspergillus niger/metabolismo , Oryza/metabolismo , Ornitina Descarboxilase/metabolismo
2.
PLoS One ; 18(3): e0283696, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37000792

RESUMO

Leishmania is a protozoan that causes leishmaniasis, a neglected tropical disease with clinical manifestations classified as cutaneous, mucocutaneous, and visceral leishmaniasis. In the infection context, the parasite can modulate macrophage gene expression affecting the microbicidal activity and immune response. The metabolism of L-arginine into polyamines putrescine, spermidine, and spermine reduces nitric oxide (NO) production, favoring Leishmania survival. Here, we investigate the effect of supplementation with L-arginine and polyamines in infection of murine BALB/c macrophages by L. amazonensis and in the transcriptional regulation of genes involved in arginine metabolism and proinflammatory response. We showed a reduction in the percentage of infected macrophages upon putrescine supplementation compared to L-arginine, spermidine, and spermine supplementation. Unexpectedly, deprivation of L-arginine increased nitric oxide synthase (Nos2) gene expression without changes in NO production. Putrescine supplementation increased transcript levels of polyamine metabolism-related genes Arg2, ornithine decarboxylase (Odc1), Spermidine synthase (SpdS), and Spermine synthase (SpmS), but reduced Arg1 in L. amazonensis infected macrophages, while spermidine and spermine promoted opposite effects. Putrescine increased Nos2 expression without leading to NO production, while L-arginine plus spermine led to NO production in uninfected macrophages, suggesting that polyamines can induce NO production. Besides, L-arginine supplementation reduced Il-1b during infection, and L-arginine or L-arginine plus putrescine increased Mcp1 at 24h of infection, suggesting that polyamines availability can interfere with cytokine/chemokine production. Our data showed that putrescine shifts L-arginine-metabolism related-genes on BALB/c macrophages and affects infection by L. amazonensis.


Assuntos
Leishmania , Leishmaniose , Animais , Camundongos , Putrescina/farmacologia , Putrescina/metabolismo , Espermidina/farmacologia , Espermidina/metabolismo , Espermina/metabolismo , Poliaminas/metabolismo , Leishmaniose/tratamento farmacológico , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Óxido Nítrico Sintase/metabolismo , Macrófagos/metabolismo , Arginina/farmacologia , Arginina/metabolismo , Suplementos Nutricionais
3.
Sci Rep ; 13(1): 4279, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922543

RESUMO

Bacterial phytopathogens living on the surface or within plant tissues may experience oxidative stress because of the triggered plant defense responses. Although it has been suggested that polyamines can defend bacteria from this stress, the mechanism behind this action is not entirely understood. In this study, we investigated the effects of oxidative stress on the polyamine homeostasis of the plant pathogen Pseudomonas syringae and the functions of these compounds in bacterial stress tolerance. We demonstrated that bacteria respond to H2O2 by increasing the external levels of the polyamine putrescine while maintaining the inner concentrations of this compound as well as the analogue amine spermidine. In line with this, adding exogenous putrescine to media increased bacterial tolerance to H2O2. Deletion of arginine decarboxylase (speA) and ornithine decarboxylate (speC), prevented the synthesis of putrescine and augmented susceptibility to H2O2, whereas targeting spermidine synthesis alone through deletion of spermidine synthase (speE) increased the level of extracellular putrescine and enhanced H2O2 tolerance. Further research demonstrated that the increased tolerance of the ΔspeE mutant correlated with higher expression of H2O2-degrading catalases and enhanced outer cell membrane stability. Thus, this work demonstrates previously unrecognized connections between bacterial defense mechanisms against oxidative stress and the polyamine metabolism.


Assuntos
Poliaminas , Espermidina , Poliaminas/metabolismo , Espermidina/metabolismo , Putrescina/metabolismo , Pseudomonas syringae/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo
4.
Microbiology (Reading) ; 164(4): 600-613, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29619919

RESUMO

Polyamines (PAs) are ubiquitous polycations derived from basic l-amino acids whose physiological roles are still being defined. Their biosynthesis and functions in nitrogen-fixing rhizobia such as Sinorhizobium meliloti have not been extensively investigated. Thin layer chromatographic and mass spectrometric analyses showed that S. meliloti Rm8530 produces the PAs, putrescine (Put), spermidine (Spd) and homospermidine (HSpd), in their free forms and norspermidine (NSpd) in a form bound to macromolecules. The S. meliloti genome encodes two putative ornithine decarboxylases (ODC) for Put synthesis. Activity assays with the purified enzymes showed that ODC2 (SMc02983) decarboxylates both ornithine and lysine. ODC1 (SMa0680) decarboxylates only ornithine. An odc1 mutant was similar to the wild-type in ODC activity, PA production and growth. In comparison to the wild-type, an odc2 mutant had 45 % as much ODC activity and its growth rates were reduced by 42, 14 and 44 % under non-stress, salt stress or acid stress conditions, respectively. The odc2 mutant produced only trace levels of Put, Spd and HSpd. Wild-type phenotypes were restored when the mutant was grown in cultures supplemented with 1 mM Put or Spd or when the odc2 gene was introduced in trans. odc2 gene expression was increased under acid stress and reduced under salt stress and with exogenous Put or Spd. An odc1 odc2 double mutant had phenotypes similar to the odc2 mutant. These results indicate that ODC2 is the major enzyme for Put synthesis in S. meliloti and that PAs are required for normal growth in vitro.


Assuntos
Ornitina Descarboxilase/metabolismo , Poliaminas/metabolismo , Sinorhizobium meliloti/crescimento & desenvolvimento , Sinorhizobium meliloti/metabolismo , Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Meios de Cultura , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Mutação , Ornitina Descarboxilase/genética , Poliaminas/análise , Putrescina/metabolismo , Sinorhizobium meliloti/enzimologia , Espermidina/análogos & derivados , Espermidina/metabolismo , Transcrição Gênica
5.
Plant Cell Physiol ; 59(5): 1084-1098, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29490084

RESUMO

The mechanisms that control polyamine (PA) metabolism in plant cell lines with different embryogenic potential are not well understood. This study involved the use of two Araucaria angustifolia cell lines, one of which was defined as being blocked, in that the cells were incapable of developing somatic embryos, and the other as being responsive, as the cells could generate somatic embryos. Cellular PA metabolism was modulated by using 5 mM arginine (Arg) or ornithine (Orn) at two time points during cell growth. Two days after subculturing with Arg, an increase in citrulline (Cit) content was observed, followed by a higher expression of genes related to PA catabolism in the responsive cell line; whereas, in the blocked cell line, we only observed an accumulation of PAs. After 14 d, metabolism was directed towards putrescine accumulation in both cell lines. Exogenous Arg and Orn not only caused a change in cellular contents of PAs, but also altered the abundance of a broader spectrum of amino acids. Specifically, Cit was the predominant amino acid. We also noted changes in the expression of genes related to PA biosynthesis and catabolism. These results indicate that Arg and Orn act as regulators of both biosynthetic and catabolic PA metabolites; however, we suggest that they have distinct roles associated with embryogenic potential of the cells.


Assuntos
Aminoácidos/metabolismo , Arginina/metabolismo , Ornitina/metabolismo , Pinaceae/embriologia , Pinaceae/metabolismo , Poliaminas/metabolismo , Vias Biossintéticas/genética , Linhagem Celular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ornitina Descarboxilase/metabolismo , Coloração e Rotulagem
6.
Electron. j. biotechnol ; 26: 1-6, Mar. 2017. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1008840

RESUMO

Background: Ornithine decarboxylase antizyme 1 (OAZ1) is an important regulator of polyamine synthesis and uptake. Our previous studies indicated that high OAZ1 expression in the ovaries of laying geese is responsible for poor egg production. In the present study, the molecular characterization of goose OAZ1 gene was analyzed, as well as the expression profile in various follicular tissues. Results: An 873-bp cDNA sequence of the OAZ1 gene (Accession No. KC845302) with a +1 frameshift site (+175T) was obtained. The sequence consisted of a 652-bp two overlapping open reading frames (a putative protein with 216 amino acids). The OAZ domain, OAZ signature and OAZ super family domain were prominent conserved regions among species. As the follicle size increased, OAZ1 abundance showed an increasing trend during follicular development, while it decreased during follicular regression. The level of OAZ1 mRNA expression was the lowest in the fifth largest preovulatory follicle, and was 0.65-fold compared to the small white follicle (P b 0.05). OAZ1 mRNA expression in the largest preovulatory and postovulatory follicle was 2.11- and 2.49-fold compared to the small white follicle, respectively (P b 0.05). Conclusions: The goose OAZ1 structure confirms that OAZ1 plays an important role in ornithine decarboxylase-mediated regulation of polyamine homeostasis. Our findings provide an evidence for a potential function of OAZ1 in follicular development, ovulation and regression.


Assuntos
Animais , Feminino , Proteínas/genética , Proteínas/metabolismo , Gansos/metabolismo , Folículo Ovariano/metabolismo , Ornitina Descarboxilase/metabolismo , Poliaminas/metabolismo , RNA Mensageiro , Clonagem Molecular , Análise de Sequência , DNA Complementar , Reação em Cadeia da Polimerase em Tempo Real , Folículo Ovariano/crescimento & desenvolvimento
7.
Exp Parasitol ; 175: 36-43, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28167207

RESUMO

Trypanosomatids present a unique mechanism for detoxification of peroxides that is dependent on trypanothione (bisglutathionylspermidine). Ornithine decarboxylase (ODC) and γ-glutamylcysteine synthetase (GSH1) produce molecules that are direct precursors of trypanothione. In this study, Leishmania guyanensis odc and gsh1 overexpressor cell lines were generated to investigate the contribution of these genes to the trivalent antimony (SbIII)-resistance phenotype. The ODC- or GSH1-overexpressors parasites presented an increase of two and four-fold in SbIII-resistance index, respectively, when compared with the wild-type line. Pharmacological inhibition of ODC and GSH1 with the specific inhibitors α-difluoromethylornithine (DFMO) and buthionine sulfoximine (BSO), respectively, increased the antileishmanial effect of SbIII in all cell lines. However, the ODC- and GSH1-overexpressor were still more resistant to SbIII than the parental cell line. Together, our data shows that modulation of ODC and GSH1 levels and activity is sufficient to affect L. guyanensis susceptibility to SbIII, and confirms a role of these genes in the SbIII-resistance phenotype.


Assuntos
Antimônio/farmacologia , Glutamato-Cisteína Ligase/metabolismo , Leishmania guyanensis/efeitos dos fármacos , Leishmania guyanensis/enzimologia , Ornitina Descarboxilase/metabolismo , Animais , Western Blotting , Butionina Sulfoximina/farmacologia , Eflornitina/farmacologia , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica , Concentração Inibidora 50 , Leishmaniose Mucocutânea/tratamento farmacológico , Doenças Negligenciadas/tratamento farmacológico , Doenças Negligenciadas/parasitologia , Inibidores da Ornitina Descarboxilase/farmacologia , Coelhos , Proteínas Recombinantes/metabolismo
8.
Tree Physiol ; 37(1): 116-130, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28175909

RESUMO

Polyamines (PAs), such as spermidine and spermine, as well as amino acids that are substrates for their biosynthesis, are known to be essential for plant development. However, little is known about the gene expression and metabolic switches associated with the ornithine/arginine and PA biosynthetic pathway during seed development in conifers. To understand these metabolic switches, the enzyme activity of arginine decarboxylase and ornithine decarboxylase, as well as the contents of PAs and amino acids were evaluated in three Araucaria angustifolia (Bertol. Kuntze) seed developmental stages in combination with expression profile analyses of genes associated with the ornithine/arginine and PA biosynthetic pathway. Twelve genes were selected for further analysis and it was shown that the expression profiles of AaADC and AaSAMDC were up-regulated during zygotic embryo development. Polyamines and amino acids were found to accumulate differently in embryos and megagametophytes, and the transition from the globular to the cotyledonary stage was marked by an increase in free and conjugated spermidine and spermine contents. Putrescine is made from arginine, which was present at low content at the late embryogenesis stage, when high content of citrulline was observed. Differences in amino acids, PAs and gene expression profiles of biosynthetic genes at specific seed stages and at each seed transition stage were investigated, providing insights into molecular and physiological aspects of conifer embryogenesis for use in future both basic and applied studies.


Assuntos
Aminoácidos/metabolismo , Carboxiliases/genética , Expressão Gênica , Ornitina Descarboxilase/genética , Proteínas de Plantas/genética , Poliaminas/metabolismo , Traqueófitas/genética , Vias Biossintéticas , Carboxiliases/metabolismo , Ornitina Descarboxilase/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Análise de Sequência de DNA , Traqueófitas/enzimologia , Traqueófitas/crescimento & desenvolvimento , Traqueófitas/metabolismo
9.
J Transl Med ; 14(1): 307, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27784309

RESUMO

BACKGROUND: The pre-treatment with α-tocopherol inhibits progression of rat liver proliferation induced by partial hepatectomy (PH), by decreasing and/or desynchronizing cyclin D1 expression and activation into the nucleus, activation and nuclear translocation of STAT-1 and -3 proteins and altering retinoid metabolism. Interactions between retinoic acid and polyamines have been reported in the PH-induced rat liver regeneration. Therefore, we evaluated the effect of low dosage of α-tocopherol on PH-induced changes in polyamine metabolism. METHODS: This study evaluated the participation of polyamine synthesis and metabolism during α-tocopherol-induced inhibition of rat liver regeneration. In PH-rats (Wistar) treated with α-tocopherol and putrescine, parameters indicative of cell proliferation, lipid peroxidation, ornithine decarboxylase expression (ODC), and polyamine levels, were determined. RESULTS: Pre-treatment with α-tocopherol to PH-animals exerted an antioxidant effect, shifting earlier the increased ODC activity and expression, temporally affecting polyamine synthesis and ornithine metabolism. Whereas administration of putrescine induced minor changes in PH-rats, the concomitant treatment actually counteracted most of adverse actions exerted by α-tocopherol on the remnant liver, restituting its proliferative potential, without changing its antioxidant effect. Putrescine administration to these rats was also associated with lower ODC expression and activity in the proliferating liver, but the temporally shifting in the amount of liver polyamines induced by α-tocopherol, was also "synchronized" by the putrescine administration. The latter is supported by the fact that a close relationship was observed between fluctuations of polyamines and retinoids. CONCLUSIONS: Putrescine counteracted most adverse actions exerted by α-tocopherol on rat liver regeneration, restoring liver proliferative potential and restituting the decreased retinoid levels induced by α-tocopherol. Therefore interactions between polyamines and retinol, mediated by the oxidant status, should be taken into consideration in the development of new therapeutic strategies for pathologies occurring with liver cell proliferation.


Assuntos
Regeneração Hepática/efeitos dos fármacos , Putrescina/farmacologia , Retinoides/metabolismo , alfa-Tocoferol/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/enzimologia , Hepatectomia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Masculino , Mitose/efeitos dos fármacos , Ornitina Descarboxilase/metabolismo , Oxidantes/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
10.
Benef Microbes ; 6(5): 719-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25809214

RESUMO

Amino acid decarboxylation is important for the maintenance of intracellular pH under acid stress. This study aims to carry out phylogenetic and expression analysis by real-time PCR of two genes that encode proteins involved in ornithine decarboxylation in Lactobacillus delbrueckii UFV H2b20 exposed to acid stress. Sequencing and phylogeny analysis of genes encoding ornithine decarboxylase and amino acid permease in L. delbrueckii UFV H2b20 showed their high sequence identity (99%) and grouping with those of L. delbrueckii subsp. bulgaricus ATCC 11842. Exposure of L. delbrueckii UFV H2b20 cells in MRS pH 3.5 for 30 and 60 min caused a significant increase in expression of the gene encoding ornithine decarboxylase (up to 8.1 times higher when compared to the control treatment). Increased expression of the ornithine decarboxylase gene demonstrates its involvement in acid stress response in L. delbrueckii UFV H2b20, evidencing that the protein encoded by that gene could be involved in intracellular pH regulation. The results obtained show ornithine decarboxylation as a possible mechanism of adaptation to an acidic environmental condition, a desirable and necessary characteristic for probiotic cultures and certainly important to the survival and persistence of the L. delbrueckii UFV H2b20 in the human gastrointestinal tract.


Assuntos
Ácidos/toxicidade , Lactobacillus delbrueckii/efeitos dos fármacos , Lactobacillus delbrueckii/enzimologia , Ornitina Descarboxilase/metabolismo , Estresse Fisiológico , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Análise por Conglomerados , Perfilação da Expressão Gênica , Humanos , Lactobacillus delbrueckii/fisiologia , Ornitina Descarboxilase/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA