Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Cell Biochem ; 125(2): e30517, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38224178

RESUMO

Colorectal cancer (CRC) is the third most common and deadliest cancer globally. Regimens using 5-fluorouracil (5FU) and Oxaliplatin (OXA) are the first-line treatment for CRC, but tumor recurrence is frequent. It is plausible to hypothesize that differential cellular responses are triggered after treatments depending on the genetic background of CRC cells and that the rational modulation of cell tolerance mechanisms like autophagy may reduce the regrowth of CRC cells. This study proposes investigating the cellular mechanisms triggered by CRC cells exposed to 5FU and OXA using a preclinical experimental design mimicking one cycle of the clinical regimen (i.e., 48 h of treatment repeated every 2 weeks). To test this, we treated CRC human cell lines HCT116 and HT29 with the 5FU and OXA, combined or not, for 48 h, followed by analysis for two additional weeks. Compared to single-drug treatments, the co-treatment reduced tumor cell regrowth, clonogenicity and stemness, phenotypes associated with tumor aggressiveness and poor prognosis in clinics. This effect was exerted by the induction of apoptosis and senescence only in the co-treatment. However, a week after treatment, cells that tolerated the treatment had high levels of autophagy features and restored the proliferative phenotype, resembling tumor recurrence. The pharmacologic suppression of early autophagy during its peak of occurrence, but not concomitant with chemotherapeutics, strongly reduced cell regrowth. Overall, our experimental model provides new insights into the cellular mechanisms that underlie the response and tolerance of CRC cells to 5FU and OXA, suggesting optimized, time-specific autophagy inhibition as a new avenue for improving the efficacy of current treatments.


Assuntos
Neoplasias Colorretais , Humanos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Neoplasias Colorretais/genética , Recidiva Local de Neoplasia , Células HT29 , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Apoptose , Autofagia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética
2.
Biol Res ; 56(1): 3, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36658640

RESUMO

BACKGROUND: Contrary to the advantageous anticancer activities of curcumin (Cur), limited bioavailability and solubility hindered its efficacy. Here, nontoxic dendrosomal nano carrier with Cur was used to overcome these problems. Despite considerable antitumor properties of Oxaliplatin (Oxa), the limiting factors are drug resistance and adverse side-effects. The hypothesis of this study was to evaluate the possible synergism between dendrosomal nanocurcumin (DNC) and Oxa and these agents showed growth regulatory effects on SKOV3 and OVCAR3 cells. METHODS AND MATERIALS: In the present study, colony formation, wound healing motility, cell adhesion, transwell invasion and migration assay and cell cycle arrest with or without DNC, Oxa and Combination were defined. In addition to, real time PCR and Western blot were used to analyze AKT, PI3K, PKC, JNK, P38 and MMPs mRNAs and proteins expressions. Docking of MMP-2-Cur, MMP-2-DNC and MMP-2-Oxa was performed and the results of all three complexes were simulated by molecular dynamics. RESULTS: Our findings illustrated that DNC had the greatest effect on cell death as compared to the Cur alone. Moreover, the growth inhibitory effects (such as cell death correlated to apoptosis) were more intense if Oxa was added followed by DNC at 4 h interval. However, insignificant effects were observed upon simultaneous addition of these two agents in both cell lines. Besides, a combination of agents synergistically alters the relative expression of MMP-9. CONCLUSIONS: The docking results showed that His70 and Asp100 may play a key role at the MMP-2 binding site. The matrigel invasion as well as cell viability of ovarian cancer cell lines SKOV3 and OVCAR3 by DNC alone or in combination with Oxa was inhibited significantly. The inhibitory effects of these agents were due to the differential expression levels of MMP 2 and MMP 9 regulated by multiple downstream signaling cascades. From the molecular dynamic simulation studies, it was confirmed that DNC established a strong interaction with MMP-2.


Assuntos
Curcumina , Neoplasias Ovarianas , Humanos , Feminino , Oxaliplatina/farmacologia , Apoptose , Metaloproteinase 2 da Matriz/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Curcumina/farmacologia , Movimento Celular
3.
Clin Transl Oncol ; 25(1): 160-172, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36129606

RESUMO

PURPOSE: Colorectal cancer (CRC) is a malignant tumor. Oxaliplatin (OXA) can inhibit cancer-associated fibroblasts (CAFs)-induced cancer progression. This study sought to explore the mechanism of OXA in CAFs-induced CRC development. METHODS: CRC cell lines (Caco-2, SW620), normal fibroblasts (NFs), and CAFs were treated with OXA. NFs and CAFs were cultured. CAFs were treated with/without OXA (0.4 mM), and the supernatant was extracted as the conditioned medium (CM) to culture CRC cells. Cell malignant episodes, E-cadherin and Vimentin levels, CXCL1, CXCL2, CXCL3, CXCL8, and CXCL11 mRNA levels, CXCL11 protein level, and extracellular release were assessed. CAFs were transfected with interfering RNA sh-CXCL11 to silence CXCL11 or transfected with CXCL11 overexpression plasmids and treated with OXA to explore the role of CXCL11 in OXA-mediated CRC cells through CAFs. CXCL11 receptor CXCR3 levels in CRC cells and the PI3K/AKT pathway changes were examined. The xenogeneic tumor was transplanted in nude mice. CXCL11 and CXCR3 levels in tumor tissues, tumor volume, shape, size, weight, and Ki67 positive expressions were assessed. RESULTS: CRC cell growths and epithelial-mesenchymal transformation were stimulated after culture with CAFs-CM, while OXA averted these trends. CXCL11 mRNA level was elevated most significantly, and its protein and extracellular secretion levels were raised, while OXA diminished the levels. CXCL11 silencing weakened the effects of CAFs-CM on promoting CRC proliferation and malignant episodes and CXCL11 overexpression averted OXA property on inhibiting CAFs-promoted CRC cell growth. CXCR3 and PI3K and AKT1 phosphorylation levels were raised in the CAFs-CM group but diminished by OXA. CXCL11 overexpression in CAFs averted OXA property on inhibiting CAFs-activated CXCR3/PI3K/AKT in CRC cells. OXA also inhibited the progression of xenograft tumors by limiting CAFs-secreted CXCL11. CONCLUSIONS: OXA repressed CRC progression by inhibiting CAFs-secreted CXCL11 and the CXCR3/PI3K/AKT pathway.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Animais , Camundongos , Humanos , Oxaliplatina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Nus , Células CACO-2 , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Neoplasias Colorretais/genética , Proliferação de Células , Movimento Celular/genética , Quimiocina CXCL11/metabolismo , Quimiocina CXCL11/farmacologia , Receptores CXCR3/metabolismo
4.
Biol. Res ; 56: 3-3, 2023. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1420301

RESUMO

BACKGROUND: Contrary to the advantageous anticancer activities of curcumin (Cur), limited bioavailability and solubility hindered its efficacy. Here, nontoxic dendrosomal nano carrier with Cur was used to overcome these problems. Despite considerable antitumor properties of Oxaliplatin (Oxa), the limiting factors are drug resistance and adverse side-effects. The hypothesis of this study was to evaluate the possible synergism between dendrosomal nanocurcumin (DNC) and Oxa and these agents showed growth regulatory effects on SKOV3 and OVCAR3 cells. METHODS: and materials In the present study, colony formation, wound healing motility, cell adhesion, transwell invasion and migration assay and cell cycle arrest with or without DNC, Oxa and Combination were defined. In addition to, real time PCR and Western blot were used to analyze AKT, PI3K, PKC, JNK, P38 and MMPs mRNAs and proteins expressions. Docking of MMP-2-Cur, MMP-2-DNC and MMP-2-Oxa was performed and the results of all three complexes were simulated by molecular dynamics. RESULTS: Our findings illustrated that DNC had the greatest effect on cell death as compared to the Cur alone. Moreover, the growth inhibitory effects (such as cell death correlated to apoptosis) were more intense if Oxa was added followed by DNC at 4 h interval. However, insignificant effects were observed upon simultaneous addition of these two agents in both cell lines. Besides, a combination of agents synergistically alters the relative expression of MMP-9. CONCLUSIONS: The docking results showed that His70 and Asp100 may play a key role at the MMP-2 binding site. The matrigel invasion as well as cell viability of ovarian cancer cell lines SKOV3 and OVCAR3 by DNC alone or in combination with Oxa was inhibited significantly. The inhibitory effects of these agents were due to the differential expression levels of MMP 2 and MMP 9 regulated by multiple downstream signaling cascades. From the molecular dynamic simulation studies, it was confirmed that DNC established a strong interaction with MMP-2.


Assuntos
Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Curcumina/farmacologia , Movimento Celular , Apoptose , Metaloproteinase 2 da Matriz/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Oxaliplatina/farmacologia
5.
Eur J Pharmacol ; 933: 175253, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36067803

RESUMO

The drug, 5-fluorouracil (5FU) is a standard first-line treatment for colorectal cancer (CRC) patients. However, drug resistance acquisition remains an important challenge for effective clinical outcomes. Here, we established a long-term drug-resistant CRC model and explored the cellular events underlying 5FU resistance. We showed that 5FU-treated cells (HCT-116 5FUR) using a prolonged treatment protocol were significantly more resistant than parental cells. Likewise, cell viability and IC50 values were also observed to increase in HCT-116 5FUR cells when treated with increasing doses of oxaliplatin, indicating a cross-resistance mechanism to other cytotoxic agents. Moreover, HCT-116 5FUR cells exhibited metabolic and molecular changes, as evidenced by increased thymidylate synthase levels and upregulated mRNA levels of ABCB1. HCT-116 5FUR cells were able to overcome S phase arrest and evade apoptosis, as well as activate autophagy, as indicated by increased LC3B levels. Cells treated with low and high doses displayed epithelial-mesenchymal transition (EMT) features, as observed by decreased E-cadherin and claudin-3 levels, increased vimentin protein levels, and increased SLUG, ZEB2 and TWIST1 mRNA levels. Furthermore, HCT-116 5FUR cells displayed enhanced migration and invasion capabilities. Interestingly, we found that the 5FU drug-resistance gene signature is positively associated with the mesenchymal signature in CRC samples, and that ABCB1 and ZEB2 co-expressed at high levels could predict poor outcomes in CRC patients. Overall, the 5FU long-term drug-resistance model established here induced various cellular events, and highlighted the importance of further efforts to identify promising targets involved in more than one cellular event to successfully overcome drug-resistance.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Apoptose , Autofagia , Caderinas/genética , Linhagem Celular Tumoral , Proliferação de Células , Claudina-3 , Neoplasias do Colo/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Citotoxinas , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Fluoruracila/farmacologia , Humanos , Oxaliplatina/farmacologia , RNA Mensageiro , Timidilato Sintase , Vimentina
6.
Mol Med Rep ; 24(4)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34396431

RESUMO

Colorectal cancer (CRC) is one of the main causes of mortality. Recent studies suggest that cancer stem cells (CSCs) can survive after chemotherapy and promote tumor invasiveness and aggression. According to a higher hierarchy complexity of CSC, different protocols for isolation, expansion, and characterization have been used; however, there are no available resistance biomarkers that allow predicting the clinical response of treatment 5­fluorouracil (5FU) and oxaliplatin. Therefore, the primary aim of the present study was to analyze the expression of gene resistance on tumors and CSC­derived isolates from patients CRC. In the present study, adenocarcinomas of the colon and rectum (CRAC) were classified based on an in vitro adenosine triphosphate­based chemotherapy response assay, as sensitive and resistant and the percentage of CD24 and CD44 markers are evaluated by immunohistochemistry. To isolate resistant colon­CSC, adenocarcinoma tissues resistant to 5FU and oxaliplatin were evaluated. Finally, all samples were sequenced using a custom assay with chemoresistance­associated genes to find a candidate gene on resistance colon­CSC. Results showed that 59% of the CRC tissue analyzed was resistant and had a higher percentage of CD44 and CD24 markers. An association was found in the expression of some genes between the tumor­resistant tissue and CSC. Overall, isolates of the CSC population CD44+ resistant to 5FU and oxaliplatin demonstrated different expression profiles; however, the present study was able to identify overexpression of the KRT­18 gene, in most of the isolates. In conclusion, the results of the present study showed overexpression of KRT­18 in CD44+ cells is associated with chemoresistance to 5FU and oxaliplatin in CRAC.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Células-Tronco Neoplásicas , Adenocarcinoma/patologia , Adulto , Idoso , Biomarcadores Tumorais/genética , Antígeno CD24 , Feminino , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores de Hialuronatos , Imuno-Histoquímica/métodos , Masculino , Pessoa de Meia-Idade , Oxaliplatina/farmacologia
7.
Clin Transl Oncol ; 23(1): 110-121, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32661823

RESUMO

PURPOSE: Chemotherapy for advanced pancreatic cancer has limited efficacy due to the difficultly of treating established tumours and the evolution of tumour resistance. Chemotherapies for pancreatic cancer are typically studied for their cytotoxic properties rather than for their ability to increase the immunogenicity of pancreatic tumour cells. In this study Gemcitabine in combination with immune modulatory chemotherapies Oxaliplatin, zoledronic acid and pomalidomide was studied to determine how combination therapy alters the immunogenicity of pancreatic tumour cell lines and subsequent T-cell responses. METHODS: Pancreatic tumour cell lines were stimulated with the chemotherapeutic agents and markers of immune recognition were assessed. The effect of chemotherapeutic agents on DC function was measured using uptake of CFSE-stained PANC-1 cells, changes in markers of maturation and their ability to activate CD8+ T-cells. The effect of chemotherapeutic agents on T-cell priming prior to activation using anti-CD3 and anti-CD28 antibodies was determined by measuring IFN-γ expression and Annexin V staining using flow cytometry. RESULTS: These agents demonstrate both additive and inhibitory properties on a range of markers of immunogenicity. Gemcitabine was notable for its ability to induce the upregulation of human leukocyte antigen and checkpoints on pancreatic tumour cell lines whilst inhibiting T-cell activation. Pomalidomide demonstrated immune modulatory properties on dendritic cells and T-cells, even in the presence of gemcitabine. DISCUSSION: These data highlight the complex interactions of different agents in the modulation of tumour immunogenicity and immune cell activation and emphasise the complexity in rationally designing chemo immunogenic combinations for use with immunotherapy.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Desoxicitidina/análogos & derivados , Imunomodulação/efeitos dos fármacos , Neoplasias Pancreáticas/imunologia , Anexina A5/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Desoxicitidina/farmacologia , Interações Medicamentosas/imunologia , Antígenos de Histocompatibilidade Classe I/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Imunomodulação/imunologia , Interferon gama/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Oxaliplatina/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Talidomida/análogos & derivados , Talidomida/farmacologia , Ácido Zoledrônico/farmacologia , Gencitabina
8.
Clin Transl Oncol ; 22(7): 1126-1137, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31741141

RESUMO

BACKGROUND: Emerging evidence suggests that stemness in cancer cells is a cause of drug resistance or metastasis and is an important therapeutic target. PR [positive regulatory domain I-binding factor 1 (PRDI-BF1) and retinoblastoma protein-interacting zinc finger gene (RIZ1)] domain containing 14 (PRDM14), that regulates pluripotency in primordial germ cell, has reported the overexpression and function of stemness in various malignancies, suggesting it as the possible therapeutic target. However, to our knowledge, there have been no reports on the expression and function of PRDM14 in colorectal cancer (CRC). Therefore, we investigated the expression and the role of PRDM14 in CRC. METHODS: We performed immunohistochemistry evaluations and assessed PRDM14 expression on 414 primary CRC specimens. Colon cancer cell lines were subjected to functional and stemness assays in vitro and in vivo. RESULTS: We found that PRDM14 positive staining exhibited heterogeneity in the CRC primary tumor, especially at the tumor invasion front. The aberrant expression of PRDM14 at the invasion front was associated with lymph node metastasis and disease stage in patients with CRC. Furthermore, the multivariate analysis revealed high PRDM14 expression as an independent prognostic factor in the patients with Stage III CRC. Overexpression of PRDM14 enhanced the invasive, drug-resistant and stem-like properties in colon cancer cells in vitro and tumorigenicity in vivo. CONCLUSION: Our findings suggest that PRDM14 is involved in progression and chemoresistance of CRC, and is a potential prognostic biomarker and therapeutic target in the CRC patients.


Assuntos
Adenocarcinoma/genética , Neoplasias Colorretais/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Idoso , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Fluoruracila/farmacologia , Humanos , Imuno-Histoquímica , Irinotecano/farmacologia , Linfonodos/patologia , Metástase Linfática , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Estadiamento de Neoplasias , Transplante de Neoplasias , Oxaliplatina/farmacologia , Prognóstico , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/metabolismo , Carga Tumoral
9.
J Glob Oncol ; 5: 1-6, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31479339

RESUMO

PURPOSE: Conversion chemotherapy is often used for borderline or unresectable (B/U) liver metastases from colorectal cancer (CRC) with the aim of achieving resectability. Although intensive and costly regimens are often used, the best regimen in this scenario remains unclear. We aimed to evaluate the outcomes of patients with B/U liver metastases from CRC treated with conversion chemotherapy with the modified fluorouracil, leucovorin, and oxaliplatin (mFLOX) regimen followed by metastasectomy. METHODS: We performed a single-center retrospective analysis of patients with B/U liver metastases from CRC treated with chemotherapy with the mFLOX regimen followed by surgery. B/U disease was defined as at least one of the following: more than four lesions, involvement of hepatic artery or portal vein, or involvement of biliary structure. RESULTS: Fifty-four consecutive patients who met our criteria for B/U liver metastases were evaluated. Thirty-five patients (64%) had more than four liver lesions, 16 (29%) had key vascular structure involvement, and 16 (29%) had biliary involvement. After chemotherapy, all patients had surgery and 42 (77%) had R0 resection. After a median follow-up of 37.2 months, median progression-free survival (PFS) was 16.9 months and median overall survival (OS) was 68.3 months. R1-R2 resections were associated with worse PFS and OS compared with R0 resection (PFS: hazard ratio, 2.65; P = .007; OS: hazard ratio, 2.90; P = .014). CONCLUSION: Treatment of B/U liver metastases from CRC with conversion chemotherapy using mFLOX regimen followed by surgical resection was associated with a high R0 resection rate and favorable survival outcomes. On the basis of our results, we consider mFLOX a low-cost option for conversion chemotherapy among other options that have been proposed.


Assuntos
Fluoruracila/uso terapêutico , Leucovorina/uso terapêutico , Neoplasias Hepáticas/complicações , Oxaliplatina/uso terapêutico , Adulto , Idoso , Neoplasias Colorretais , Fluoruracila/farmacologia , Humanos , Leucovorina/farmacologia , Pessoa de Meia-Idade , Metástase Neoplásica , Oxaliplatina/farmacologia , Estudos Retrospectivos , Adulto Jovem
10.
J Peripher Nerv Syst ; 24(1): 100-110, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30680838

RESUMO

Chemotherapy-induced peripheral neuropathy is a disabling condition induced by several frequently used chemotherapeutic drugs including the front-line agent oxaliplatin (OXA). Symptoms are predominantly sensory with the development of neuropathic pain. Alternative dosing protocols and treatment discontinuation are the only available therapeutic strategies. The aim of our work was to evaluate the potential of a synthetic derivative of progesterone, 17α-hydroxyprogesterone caproate (HPGC), in the prevention and treatment of OXA-evoked painful neuropathy. We also evaluated glial activation at the dorsal root ganglia (DRG) and spinal cord levels as a possible target mechanism underlying HPGC actions. Male rats were injected with OXA and HPGC following a prophylactic (HPGCp) or therapeutic (HPGCt) scheme (starting either before or after chemotherapy). The development of hypersensitivity and allodynic pain and the expression of neuronal and glial activation markers were evaluated. When compared to control animals, those receiving OXA showed a significant decrease in paw mechanical and thermal thresholds, with the development of allodynia. Animals treated with HPGCp showed patterns of response similar to those detected in control animals, while those treated with HPGCt showed a suppression of both hypersensitivities after HPGC administration. We also observed a significant increase in the mRNA levels of activating transcription factor 3, the transcription factor (c-fos), glial fibrillary acidic protein, ionized calcium binding adaptor protein 1, interleukin 1 beta (IL-1ß) and tumor necrosis factor alpha (TNFα) in DRG and spinal cord of OXA-injected animals, and significantly lower levels in rats receiving OXA and HPGC. These results show that HPGC administration reduces neuronal and glial activation markers and is able to both prevent and suppress OXA-induced allodynia, suggesting a promising therapeutic strategy.


Assuntos
Caproato de 17 alfa-Hidroxiprogesterona/farmacologia , Antineoplásicos/farmacologia , Hiperalgesia , Neuralgia , Oxaliplatina/farmacologia , Doenças do Sistema Nervoso Periférico , Progestinas/farmacologia , Caproato de 17 alfa-Hidroxiprogesterona/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/prevenção & controle , Masculino , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/prevenção & controle , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/prevenção & controle , Progestinas/administração & dosagem , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA