Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(2)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936493

RESUMO

Manganese peroxidases (MnP) from the white-rot fungi Phanerochaete chrysosporium catalyse the oxidation of Mn2+ to Mn3+, a strong oxidizer able to oxidize a wide variety of organic compounds. Different approaches have been used to unravel the enzymatic properties and potential applications of MnP. However, these efforts have been hampered by the limited production of native MnP by fungi. Heterologous expression of MnP has been achieved in both eukaryotic and prokaryotic expression systems, although with limited production and many disadvantages in the process. Here we described a novel molecular approach for the expression and purification of manganese peroxidase isoform 1 (MnP1) from P. chrysosporium using an E. coli-expression system. The proposed strategy involved the codon optimization and chemical synthesis of the MnP1 gene for optimised expression in the E. coli T7 shuffle host. Recombinant MnP1 (rMnP1) was expressed as a fusion protein, which was recovered from solubilised inclusion bodies. rMnP1 was purified from the fusion protein using intein-based protein purification techniques and a one-step affinity chromatography. The designated strategy allowed production of an active enzyme able to oxidize guaiacol or Mn2+.


Assuntos
Escherichia coli/metabolismo , Expressão Gênica , Peroxidases/isolamento & purificação , Phanerochaete/enzimologia , Sequência de Aminoácidos , Ensaios Enzimáticos , Vetores Genéticos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Padrões de Referência , Solubilidade
3.
Sci Rep ; 8(1): 3678, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29487297

RESUMO

The glycoside hydrolase family 45 (GH45) of carbohydrate modifying enzymes is mostly comprised of ß-1,4-endoglucanases. Significant diversity between the GH45 members has prompted the division of this family into three subfamilies: A, B and C, which may differ in terms of the mechanism, general architecture, substrate binding and cleavage. Here, we use a combination of X-ray crystallography, bioinformatics, enzymatic assays, molecular dynamics simulations and site-directed mutagenesis experiments to characterize the structure, substrate binding and enzymatic specificity of the GH45 subfamily C endoglucanase from Phanerochaete chrysosporium (PcCel45A). We investigated the role played by different residues in the binding of the enzyme to cellulose oligomers of different lengths and examined the structural characteristics and dynamics of PcCel45A that make subfamily C so dissimilar to other members of the GH45 family. Due to the structural similarity shared between PcCel45A and domain I of expansins, comparative analysis of their substrate binding was also carried out. Our bioinformatics sequence analyses revealed that the hydrolysis mechanisms in GH45 subfamily C is not restricted to use of the imidic asparagine as a general base in the "Newton's cradle" catalytic mechanism recently proposed for this subfamily.


Assuntos
Celulase/química , Celulase/metabolismo , Phanerochaete/enzimologia , Catálise , Biologia Computacional , Cristalografia por Raios X , Ensaios Enzimáticos , Simulação de Dinâmica Molecular
4.
J Mol Microbiol Biotechnol ; 28(1): 1-13, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29486469

RESUMO

Ligninolytic enzyme production and lignin degradation are typically the rate-limiting steps in the biofuel industry. To improve the efficiency of simultaneous bio-delignification and enzyme production, Phanerochaete chrysosporium was transformed by shock wave-induced acoustic cavitation to co-overexpress 3 peroxidases and 1 laccase and test it on the degradation of sugarcane bagasse and wheat bran. Lignin depolymerization was enhanced by up to 25% in the presence of recombinant fungi in comparison with the wild-type strain. Sugar release on lignocellulose was 2- to 6-fold higher by recombinant fungi as compared with the control. Wheat bran ostensibly stimulated the production of ligninolytic enzymes. The highest peroxidase activity from the recombinant strains was 2.6-fold higher, whereas the increase in laccase activity was 4-fold higher in comparison to the control. The improvement of lignin degradation was directly proportional to the highest peroxidase and laccase activity. Because various phenolic compounds released during lignocellulose degradation have proven to be toxic to cells and to inhibit enzyme activity, a significant reduction (over 40%) of the total phenolic content in the samples treated with recombinant strains was observed. To our knowledge, this is the first report that engineering P. chrysosporium enhances biodegradation of lignocellulosic biomass.


Assuntos
Biomassa , Lacase/biossíntese , Lacase/genética , Peroxidases/biossíntese , Peroxidases/genética , Phanerochaete/genética , Phanerochaete/metabolismo , Biodegradação Ambiental , Biocombustíveis , Celulose/metabolismo , Clonagem Molecular , Fibras na Dieta , Ergosterol , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Lignina/metabolismo , Engenharia Metabólica , Phanerochaete/enzimologia , Phanerochaete/crescimento & desenvolvimento , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharum , Transformação Genética
5.
Food Chem ; 225: 45-54, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28193432

RESUMO

For a long time, proteolytic enzymes have been employed as key tools of industrial processes, especially in the dairy industry. In the present work, we used Phanerochaete chrysosporium for biochemical characterization and analysis of catalytic specificity of an aspartic peptidase. Our results revealed an aspartic peptidase with molecular mass ∼38kDa, maximal activity at pH 4.5 and 50°C, and stability above 80% in the pH range of 3-8 and temperature up to 55°C for 1h. In a milk-clotting assay, this peptidase showed maximal milk clotting activity at 60-65°C and maintenance of enzymatic activity above 80% in the presence of 20mM CaCl2. In a specificity assay, we observed stronger restriction of catalysis at the S1 subsite, with a preference for lysine, arginine, leucine, tyrosine, and phenylalanine residues. The restricted proteolysis and milk-clotting potential are attractive properties for the use in cheese production.


Assuntos
Ácido Aspártico Proteases/metabolismo , Queijo/microbiologia , Indústria de Processamento de Alimentos , Leite/microbiologia , Phanerochaete/enzimologia , Animais , Proteínas Fúngicas/metabolismo , Temperatura
6.
Int J Biol Macromol ; 94(Pt A): 474-483, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27771408

RESUMO

Peptidases are enzymes that catalyze the rupture of peptide bonds. Catalytic specificity studies of these enzymes have illuminated their modes of action and preferred hydrolysis targets. We describe the biochemical characteristics and catalytic specificity of a lysine-dependent peptidase secreted by the basidiomycete fungus Phanerochaete chrysosporium. We attained 5.7-fold purification of a ∼23-kDa neutral peptidase using size-exclusion (Sephadex G-50 resin) and ion-exchange (Source 15S resin) chromatography. Using the Fluorescence Resonance Energy Transfer substrate Abz-KLRSSKQ-EDDnp, we detected maximal activity at pH 7.0 and 45-55°C. The peptidase retained ∼80% of its enzymatic activity for a wide range of conditions (pH 4-9; temperatures up to 50°C for 1h). The peptidase activity was lowered by the ionic surfactants, sodium dodecyl sulfate and cetyltrimethylammonium bromide; the reducing agent, dithiothreitol; the chaotrope, guanidine; copper (II) ion; and the cysteine peptidase-specific inhibitors, iodoacetic acid and N-ethylmaleimide. The peptidase preferred the basic amino acids K and R and high selectivity on S'1 subsite, exhibiting a condition of lysine-dependence to catalysis on anchoring of this subsite.


Assuntos
Cisteína Proteases/química , Proteínas Fúngicas/química , Sequência de Aminoácidos , Biocatálise , Cisteína Proteases/isolamento & purificação , Inibidores de Cisteína Proteinase/química , Estabilidade Enzimática , Proteínas Fúngicas/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Lisina/química , Phanerochaete/enzimologia , Proteólise , Especificidade por Substrato
7.
J Biotechnol ; 209: 76-84, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26113215

RESUMO

Phanerochaete chrysosporium belongs to a group of lignin-degrading fungi that secretes various oxidoreductive enzymes, including lignin peroxidase (LiP) and manganese peroxidase (MnP). Previously, we demonstrated that the heterologous expression of a versatile peroxidase (VP) in P. chrysosporium recombinant strains is possible. However, the production of laccases (Lac) in this fungus has not been completely demonstrated and remains controversial. In order to investigate if the co-expression of Lac and VP in P. chrysosporium would improve the degradation of phenolic and non-phenolic substrates, we tested the constitutive co-expression of the lacIIIb gene from Trametes versicolor and the vpl2 gene from Pleurotus eryngii, and also the endogenous genes mnp1 and lipH8 by shock wave mediated transformation. The co-overexpression of peroxidases and laccases was improved up to five-fold as compared with wild type species. Transformant strains showed a broad spectrum in phenolic/non-phenolic biotransformation and a high percentage in synthetic dye decolorization in comparison with the parental strain. Our results show that the four enzymes can be constitutively expressed in a single transformant of P. chrysosporium in minimal medium. These data offer new possibilities for an easy and efficient co-expression of laccases and peroxidases in suitable basidiomycete species.


Assuntos
Lacase/metabolismo , Peroxidases/metabolismo , Phanerochaete/genética , Clonagem Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lacase/genética , Engenharia Metabólica/métodos , Peroxidases/genética , Phanerochaete/enzimologia , Phanerochaete/metabolismo , Fenóis/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transformação Genética
8.
Biomed Res Int ; 2013: 251354, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24490150

RESUMO

The white-rot fungus Phanerochaete chrysosporium was investigated for its capacity to degrade the herbicide diuron in liquid stationary cultures. The presence of diuron increased the production of lignin peroxidase in relation to control cultures but only barely affected the production of manganese peroxidase. The herbicide at the concentration of 7 µ g/mL did not cause any reduction in the biomass production and it was almost completely removed after 10 days. Concomitantly with the removal of diuron, two metabolites, DCPMU [1-(3,4-dichlorophenyl)-3-methylurea] and DCPU [(3,4-dichlorophenyl)urea], were detected in the culture medium at the concentrations of 0.74 µ g/mL and 0.06 µ g/mL, respectively. Crude extracellular ligninolytic enzymes were not efficient in the in vitro degradation of diuron. In addition, 1-aminobenzotriazole (ABT), a cytochrome P450 inhibitor, significantly inhibited both diuron degradation and metabolites production. Significant reduction in the toxicity evaluated by the Lactuca sativa L. bioassay was observed in the cultures after 10 days of cultivation. In conclusion, P. chrysosporium can efficiently metabolize diuron without the accumulation of toxic products.


Assuntos
Biodegradação Ambiental , Sistema Enzimático do Citocromo P-450/metabolismo , Diurona/metabolismo , Phanerochaete/enzimologia , Humanos , Lignina/metabolismo , Oxirredução , Peroxidases/metabolismo , Phanerochaete/metabolismo
9.
Biotechnol Prog ; 28(1): 114-20, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22002943

RESUMO

White-rot fungi (WRF) are capable of degrading complex organic compounds such as lignin, and the enzymes that enable these processes can be used for the detoxification of recalcitrant organopollutants. The aim of this study is to evaluate a system based on the use of an in vitro ligninolytic enzyme for the detoxification of recalcitrant dye pollutants. The dyes selected for investigation were the anionic and cationic commercial azo dyes, basic blue 41 (BB41), acid black 1 (AB1), and reactive black 5 (RB5). A supernatant, cell-free culture of WRF with manganese peroxidase activity was used to investigate its degradative capacity under various conditions, and concentrations of cofactors, H(2)O(2) and Mn(2+). The assays were carried out using a 2(2) experimental designs whose variables were concentration of Mn(2+) (33 and 1,000 µM) and semicontinuous dosage of the H(2)O(2) (0.02 and 0.10 µmol) added at a frequency of 0.2 min(-1). The response variables analyzed were the efficiency and the initial rate of the decolorization process. The dye concentrations considered ranged from 10 to 200 mg L(-1). AB1 and RB5 were decolorized over the entire interval of concentrations studied; reaching efficiencies between 15 and 95%. Decolorization of up to 100 mg L(-1), BB41 had less than 30% efficiency. The decay of the concentration of AB1 was interpreted by two-stage kinetics model, with the exception of the condition of 33 µM Mn(2+)-0.02 µmol of H(2)O(2) in which only one stage was observed. For all assays performed with 33 µM Mn(2+), the initial rate of the decolorization process was found to be dependent on the dosage of H(2)O(2). The results of this study can be applied to the development bioreactors for the degradation of recalcitrant pollutants from the textile industry and may be used as a model for expanding the use of extracellular enzyme supernatants in bioremediation.


Assuntos
Compostos Azo/metabolismo , Corantes/metabolismo , Peróxido de Hidrogênio/análise , Peroxidases/metabolismo , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Resíduos Industriais , Lignina/metabolismo , Naftalenossulfonatos/metabolismo , Naftóis/metabolismo , Phanerochaete/enzimologia , Phanerochaete/crescimento & desenvolvimento , Poluentes Químicos da Água/metabolismo
10.
J Mol Microbiol Biotechnol ; 21(3-4): 120-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22286039

RESUMO

A strain of Aspergillus niger, previously isolated from sugarcane bagasse because of its capacity to degrade phenanthrene in soil by solid culture, was used to express a manganese peroxidase gene (mnp1) from Phanerochaete chrysosporium, aiming at increasing its polycyclic aromatic hydrocarbons degradation capacity. Transformants were selected based on their resistance to hygromycin B and the discoloration induced on Poly R-478 dye by the peroxidase activity. The recombinant A. niger SBC2-T3 strain developed MnP activity and was able to remove 95% of the initial phenanthrene (400 ppm) from a microcosm soil system after 17 days, whereas the wild strain removed 72% under the same conditions. Transformation success was confirmed by PCR amplification using gene-specific primers, and a single fragment (1,348 bp long, as expected) of the recombinant mnp1 was amplified in the DNA from transformants, which was absent from the parental strain.


Assuntos
Aspergillus niger/enzimologia , Aspergillus niger/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Fenantrenos/metabolismo , Poluentes do Solo/metabolismo , Aspergillus niger/genética , Biotransformação , Primers do DNA/genética , DNA Fúngico/genética , Phanerochaete/enzimologia , Phanerochaete/genética , Reação em Cadeia da Polimerase , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Seleção Genética , Fatores de Tempo , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA