Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Methods Mol Biol ; 2827: 197-206, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985272

RESUMO

The coconut tree is a crop widely distributed in more than 90 countries worldwide. It has a high economic value derived from the large number of products obtained from the plant, with fast-growing global markets for some of them. Unfortunately, coconut production is decreasing mainly due to the old age of the plants and devastating pests and diseases, such as phytoplasma disease lethal yellowing (LY). Massive replanting is required with phytoplasma-resistant and high-yielding selected coconut plants to keep up with the market demand for fruit. For this purpose, an efficient micropropagation technology via somatic embryogenesis has been established at CICY, yielding fully developed vitro-plants grown within an in vitro environment. Hence, the last stage of the micropropagation process is the acclimatization of the vitro-plants, which are gradually adapted to live in external conditions outside the glass container and the growth room. A protocol has been developed at CICY to acclimate the coconut vitro-plants, and close to 80% survival can be obtained. This protocol is described here.


Assuntos
Aclimatação , Cocos , Técnicas de Embriogênese Somática de Plantas/métodos , Phytoplasma
2.
Plant Dis ; 108(6): 1861-1868, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38319626

RESUMO

Strawberry phyllody has emerged as a prevalent disease affecting Chilean strawberry in recent years. The causal pathogen, 'Fragaria × ananassa' phyllody phytoplasma (StrPh), is categorized within the 16S ribosomal group XIII that is exclusively found in the Americas. In the context of economically significant crops, hemipteran insect vectors and alternative host plants play a pivotal role in their natural dissemination. This study comprehensively examined the key epidemiological facets of StrPh in the central region of Chile: the insect vector and alternative hosts. Through field surveys, we identified an abundance of an insect species, Cixiosoma sp., in an StrPh-infected strawberry field and confirmed its role as a vector of this phytoplasma through subsequent transmission assays. Moreover, we found a spontaneous weed species, Galega officinalis, to be infected with StrPh, raising the possibility of it being a potential alternative host plant for this phytoplasma. StrPh was also detected in cold-stored strawberry runners purchased from a nursery that supplies the local strawberry cultivation, suggesting a potential source of this phytoplasma in Chile. Collectively, these findings provide a significant epidemiological source of StrPh dissemination in central Chile.


Assuntos
Fragaria , Hemípteros , Insetos Vetores , Phytoplasma , Doenças das Plantas , Chile , Fragaria/microbiologia , Doenças das Plantas/microbiologia , Produtos Agrícolas/microbiologia , Hemípteros/genética , Hemípteros/microbiologia
3.
Sci Rep ; 13(1): 22500, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38110543

RESUMO

Cassava witches' broom disease (CWBD) is a devastating disease of cassava in Southeast Asia (SEA), of unknown etiology. Affected plants show reduced internodal length, proliferation of leaves and weakening of stems. This results in poor germination of infected stem cuttings (i.e., planting material) and significant reductions in fresh root yields and starch content, causing economic losses for farmers and processors. Using a metagenomic approach, we identified a fungus belonging to the Ceratobasidium genus, sharing more than 98.3-99.7% nucleotide identity at the Internal Transcribed Spacer (ITS), with Ceratobasidium theobromae a pathogen causing similar symptoms in cacao. Microscopy analysis confirmed the identity of the fungus and specific designed PCR tests readily showed (1) Ceratobasidium sp. of cassava is strongly associated with CWBD symptoms, (2) the fungus is present in diseased samples collected since the first recorded CWBD outbreaks in SEA and (3) the fungus is transmissible by grafting. No phytoplasma sequences were detected in diseased plants. Current disease management efforts include adjustment of quarantine protocols and guarantee the production and distribution of Ceratobasidium-free planting material. Implications of related Ceratobasidium fungi, infecting cassava, and cacao in SEA and in other potential risk areas are discussed.


Assuntos
Cacau , Manihot , Phytoplasma , Doenças por Fitoplasmas , Doenças das Plantas/microbiologia , Fungos , Cacau/microbiologia
4.
Pest Manag Sci ; 79(7): 2325-2337, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36799295

RESUMO

BACKGROUND: Corn is one of the main crops grown globally to produce food for human consumption and animal feed, including raw materials for bioenergy. Effective pest management is critical for the economic viability of corn production. The leafhopper Dalbulus maidis and the diseases transmitted by it have become relevant to corn production. Our study aimed to determine environmental parameters that affect D. maidis populations and the impacts of pathogen dispersion on corn productivity under different rotation systems and sowing seasons. RESULTS: The population density of leafhoppers found in the studied crops was low but capable of establishing the diseases and spreading them widely in the crops. The leafhopper's highest occurrence was in the corn vegetative development stage, and its population peaks were earlier in the corn off-season. The incidence of maize rayado fino virus and maize bushy stunt phytoplasma were higher in corn off-season than in the growing season. The incidence of diseases was higher in the final stages of the cultivation cycle. Yield losses were significantly higher for maize bushy stunt phytoplasma and not significant for maize rayado fino virus. CONCLUSION: Our study observed that corn's physiological stage was the main factor influencing D. maidis dynamics. The occurrence of D. maidis at low densities was sufficient to ensure the efficient transmission and dissemination of maize rayado fino virus and maize bushy stunt phytoplasma, which had a higher incidence in the reproductive stage and the corn sowed off-season. © 2023 Society of Chemical Industry.


Assuntos
Hemípteros , Phytoplasma , Animais , Humanos , Zea mays , Phytoplasma/fisiologia , Hemípteros/fisiologia , Incidência
5.
Braz J Biol ; 84: e257470, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35416853

RESUMO

Lethal yellowing (LY) is a disease that affects coconut and other palm species. It is associated to phytoplasmas of the group 16SrIV and the only reported insect vector for this pathogen so far is Haplaxius crudus. H. crudus is present in Mexico and has been associated to 16SrIV phytoplasmas, however, it was not detectable during a LY outbreak in the coast of Yucatan, Mexico, suggesting the existence of other vector species. To test this hypothesis a survey of insects was carried out and a total of 3074 insects were captured during a year of monthly sampling. Ten taxonomic orders were identified in this sample, Hemiptera being the most abundant (N=2094), and these were classified into nine families. The leafhopper Colpoptera sp. from to the Nogodinidae family was de most abundant representing 56% of the total number of insects sampled and 23% of these samples resulted positive for LY phytoplasma by PCR detection. The BLAST comparison, virtual RFLP and phylogenetic analyses of the sequenced amplicons relate the detected phytoplasma to the subgroup 16SrIV-A. The findings presented herein suggest that Colpoptera sp. could be considered as a new putative vector of the LY-causing phytoplasmas in Mexico and a candidate for further research.


Assuntos
Hemípteros , Phytoplasma , Animais , DNA , Hemípteros/genética , Humanos , México , Filogenia , Phytoplasma/genética , Doenças das Plantas
7.
Pest Manag Sci ; 78(6): 2196-2203, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35218287

RESUMO

BACKGROUND: Since the last decade, Dalbulus maidis has become the primary pest in cornfields, particularly due to its ability to transmit plant pathogens. Dalbulus maidis is the main vector of the corn stunt spiroplasma and maize bushy stunt phytoplasma. However, there is little information available on this pest. Understanding its spatial dynamics may allow us to determine how its infestations begin and to identify its colonization patterns, dispersal, and the role of landscape structure on D. maidis dynamics. Thus, this study aimed to investigate within-field spatial distribution and the factors associated with D. maidis abundance in five commercial fields. RESULTS: In all fields, higher infestations occurred at the boundaries of the central pivot, showing a clear edge-biased distribution. Ranges varied from 100.4 to 611.8 m, and our models' overall fit indicated strong to moderate spatial dependency. Additionally, correlation analyses indicated a positive effect of air temperature on the population of D. maidis. Conversely, rainfall negatively affected D. maidis. CONCLUSION: This study provides essential guidance for improving D. maidis integrated pest management at regional and local scales. Based on its high dispersal ability, our study suggests the need for a legislative or regulatory method of control for D. maidis, especially in regions where corn has more than one growing season. © 2022 Society of Chemical Industry.


Assuntos
Hemípteros , Phytoplasma , Spiroplasma , Animais , Brasil , Zea mays
8.
Neotrop Entomol ; 51(1): 1-17, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34878633

RESUMO

The corn leafhopper Dalbulus maidis (DeLong & Wolcott) is one of the most important maize (Zea mays L.) pests in Latin America because of its ability to efficiently transmit pathogens [maize bushy stunt phytoplasma (MBSP) and corn stunt spiroplasma-Spiroplasma kunkelli Whitcomb et al. (CSS)] associated with corn stunt disease complex and maize rayado fino virus (MRFV). This leafhopper species, considered a secondary pest until a few years ago, was first reported in Brazil in 1938. Since 2015, corn stunt diseases have been the main phytosanitary threat to corn production in Brazil, and D. maidis has assumed the status of a key pest of the crop. In this study, we gathered pertinent information about the corn leafhopper, from the time it was first recorded in Brazil. Aspects such as origin, association with maize, bioecology, geographical distribution in the Americas, and its congeners are addressed. We present a history of studies performed with this species in the country, its importance as a pest, host plants, and survival strategies during the maize off-season. Based on the available scientific knowledge, the main management strategies for insect vectors and diseases are discussed. Finally, the main knowledge gaps for this insect vector and the prospects for future studies and actions to mitigate the damage caused by insect vectors in maize crops in Brazil are presented and discussed.


Assuntos
Hemípteros , Phytoplasma , Animais , Brasil , Insetos Vetores , Zea mays
9.
Pest Manag Sci ; 78(4): 1482-1491, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34953036

RESUMO

BACKGROUND: The corn leafhopper, Dalbulus maidis (Hemiptera: Cicadellidae), spreads maize stunt pathogens and requires timely and effective crop protection. We determined the interaction between maize phenology and the vector feeding/infection period by stunt pathogens with the residual efficacy of neonicotinoid insecticidal seed treatments. Greenhouse- and field-grown maize plants, seed-treated with clothianidin or imidacloprid insecticides, were infested during seven growth stages with corn leafhoppers reared under controlled conditions on maize plants displaying infection symptoms by both spiroplasma (corn stunt spiroplasma, Spiroplasma kunkelii) and phytoplasma (maize bushy phytoplasma) pathogens. RESULTS: In the greenhouse and field settings, seed treatment reduced the stunt disease symptoms and corn yield loss during the VE-V4 maize growth stages and caused no phytotoxicity. The neonicotinoid seed treatment reduced 20-60% of the yield losses from the corn stunt disease until the V4 growth stage. Infestation by infective corn leafhoppers in the V12 maize growth stage caused a 25-30% yield loss irrespective of seed treatment, yet no stunt disease symptom was evident. Nonetheless, corn yield losses and visual stunt symptoms as rated by a nine-category ordinal scale were strongly correlated (r = 0.79, P < 0.01). CONCLUSION: These results reinforce that maize plants are more susceptible to leafhopper stunt disease during the VE-V4 growth stages (emergence to the fourth-leaf stage). Seed treatment helps reduce the damage in the early growth stages (VE-V2), although supplemental control measures depending on leafhopper population density may be needed from VE-V12 to protect yield losses from the maize stunt condition. © 2021 Society of Chemical Industry.


Assuntos
Hemípteros , Inseticidas , Phytoplasma , Animais , Inseticidas/farmacologia , Sementes , Zea mays
10.
Int J Syst Evol Microbiol ; 70(12): 6508-6517, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33174835

RESUMO

Phytoplasmas have been associated with a disease that affects trees of at least 11 species from different botanic families in Bogotá, Colombia. 'Candidatus Phytoplasma asteris' and 'Candidatus Phytoplasma fraxini' are the major groups of phytoplasma in the area of Bogotá. In this study, the genetic diversity within 'Ca. P. asteris' and 'Ca. P. fraxini' was studied in five urban tree species: Croton species (Euphorbiaceae), Fraxinus uhdei (Oleaceae), Magnolia grandiflora (Magnoliaceae), Populus nigra (Salicaceae) and Quercus humboldtii (Fagaceae). Analyses of the 16S rRNA gene using nested PCR, RFLP and sequencing showed that phytoplasmas of 'Ca. P. asteris' could be assigned to: subgroup 16SrI-B; a new subgroup named 16SrI-AF, with a restriction pattern similar to that of 16SrI-B; and a new subgroup named 16SrI-AG, with a restriction pattern similar to that of 16SrI-K and 16SrI-AH with a restriction pattern similar to that of 16SrI-AC. 'Ca. P. fraxini' isolates belonged to a new subgroup named 16SrVII-G, with a restriction pattern similar to that of 16SrVII-A. To complement the identification of the phytoplasma strains, we amplified nonribosomal genes such as leuS and secA. Unexpectedly, it was observed that in 16 trees in which 16S rRNA gene analysis showed the presence of 'Ca. P. fraxini' only, the leuS or secA primers amplified sequences exclusively affiliated to 'Ca. P. asteris. In those plants, sequences belonging to 'Ca. P. fraxini' leuS or secA genes were not amplified. The present work contributes to the identification of novel strains of both species in Colombia, and supports previous suggestions that phytoplasmas in South America are highly variable.


Assuntos
Filogenia , Phytoplasma/classificação , Doenças das Plantas/microbiologia , Árvores/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Cidades , Colômbia , Croton/microbiologia , DNA Bacteriano/genética , Ácidos Graxos/química , Fraxinus/microbiologia , Magnolia/microbiologia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Populus/microbiologia , Quercus/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA