Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Tipo de estudo
Intervalo de ano de publicação
1.
Mar Drugs ; 22(7)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39057436

RESUMO

The marine kingdom is an important source of a huge variety of scaffolds inspiring the design of new drugs. The complex molecules found in the oceans present a great challenge to organic and medicinal chemists. However, the wide variety of biological activities they can display is worth the effort. In this article, we present an overview of different seaweeds as potential sources of bioactive pigments with activity against neurodegenerative diseases, especially due to their neuroprotective effects. Along with a broad introduction to seaweed as a source of bioactive pigments, this review is especially focused on astaxanthin and fucoxanthin as potential neuroprotective and/or anti-neurodegenerative agents. PubMed and SciFinder were used as the main sources to search and select the most relevant scientific articles within the field.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Alga Marinha , Xantofilas , Xantofilas/farmacologia , Xantofilas/química , Xantofilas/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Alga Marinha/química , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Pigmentos Biológicos/farmacologia , Pigmentos Biológicos/química , Pigmentos Biológicos/isolamento & purificação
2.
Braz J Microbiol ; 55(2): 1251-1263, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492163

RESUMO

Natural pigments have received special attention from the market and industry as they could overcome the harm to health and the environmental issues caused by synthetic pigments. These pigments are commonly extracted from a wide range of organisms, and when added to products they can alter/add new physical-chemical or biological properties to them. Fungi from extreme environments showed to be a promising source in the search for biomolecules with antimicrobial and antiparasitic potential. This study aimed to isolate fungi from Antarctic soils and screen them for pigment production with antimicrobial and antiparasitic potential, together with other previously isolated strains A total of 52 fungi were isolated from soils in front of the Collins Glacier (Southeast border). Also, 106 filamentous fungi previously isolated from the Collins Glacier (West border) were screened for extracellular pigment production. Five strains were able to produce extracellular pigments and were identified by ITS sequencing as Talaromyces cnidii, Pseudogymnoascus shaanxiensis and Pseudogymnoascus sp. All Pseudogymnoascus spp. (SC04.P3, SC3.P3, SC122.P3 and ACF093) extracts were able to inhibit S. aureus ATCC6538 and two (SC12.P3, SC32.P3) presented activity against Leishmania (L.) infantum, Leishmania amazonensis and Trypanossoma cruzii. Extracts compounds characterization by UPLC-ESI-QToF analysis confirmed the presence of molecules with biological activity such as: Asterric acid, Violaceol, Mollicellin, Psegynamide A, Diorcinol, Thailandolide A. In conclusion, this work showed the potential of Antartic fungal strains from Collins Glacier for bioactive molecules production with activity against Gram positive bacteria and parasitic protozoas.


Assuntos
Antiparasitários , Pigmentos Biológicos , Regiões Antárticas , Pigmentos Biológicos/farmacologia , Pigmentos Biológicos/biossíntese , Antiparasitários/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Fungos/efeitos dos fármacos , Fungos/metabolismo , Fungos/classificação , Microbiologia do Solo , Bactérias/efeitos dos fármacos , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/genética , Testes de Sensibilidade Microbiana , Animais , Staphylococcus aureus/efeitos dos fármacos
3.
J Nat Prod ; 85(9): 2236-2250, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36098709

RESUMO

This Review provides a critical analysis of the literature covering the naturally occurring partially reduced perylenequinones (PQs) from fungi without carbon substituents (which can be named class A perylenequinones) and discusses their structures, stereochemistry, biosynthesis, and biological activities as appropriate. Perylenequinones are natural pigments with a perylene skeleton produced by certain fungi, aphids, some plants, and animal species. These compounds display several biological activities, e.g., antimicrobial, anti-HIV, photosensitizers, cytotoxic, and phytotoxic. It describes 36 fungal PQs and cites 81 references, covering from 1956 to August 2022.


Assuntos
Fungos , Perileno , Pigmentos Biológicos , Quinonas , Animais , Fungos/química , Perileno/análogos & derivados , Perileno/química , Perileno/farmacologia , Fármacos Fotossensibilizantes , Pigmentos Biológicos/biossíntese , Pigmentos Biológicos/química , Pigmentos Biológicos/isolamento & purificação , Pigmentos Biológicos/farmacologia , Quinonas/química , Quinonas/farmacologia
4.
Mar Drugs ; 19(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064550

RESUMO

Background: Echinochrome A (EchA) is a pigment from sea urchins. EchA is a polyhydroxylated 1,4-naphthoquinone that contains several hydroxyl groups appropriate for free-radical scavenging and preventing redox imbalance. EchA is the most studied molecule of this family and is an active principle approved to be used in humans, usually for cardiopathies and glaucoma. EchA is used as a pharmaceutical drug. Methods: A comprehensive literature and patent search review was undertaken using PubMed, as well as Google Scholar and Espacenet search engines to review these areas. Conclusions: In the bloodstream, EchA can mediate cellular responses, act as a radical scavenger, and activate the glutathione pathway. It decreases ROS imbalance, prevents and limits lipid peroxidation, and enhances mitochondrial functions. Most importantly, EchA contributes to the modulation of the immune system. EchA can regulate the generation of regulatory T cells, inhibit pro-inflammatory IL-1ß and IL-6 cytokine production, while slightly reducing IL-8, TNF-α, INF-α, and NKT, thus correcting immune imbalance. These characteristics suggest that EchA is a candidate drug to alleviate the cytokine storm syndrome (CSS).


Assuntos
Síndrome da Liberação de Citocina/tratamento farmacológico , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Pigmentos Biológicos/farmacologia , Pigmentos Biológicos/uso terapêutico , Ouriços-do-Mar/química , Animais , Síndrome da Liberação de Citocina/metabolismo , Humanos , Imunidade/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
5.
Braz J Microbiol ; 52(2): 905-917, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33715141

RESUMO

The main objective of the study is to characterize two new strains of Aspergillus fumigatus through morphometric, biochemical, molecular methods, and to evaluate their antimicrobial potentiality. The micro-morphotaxonomy, growth, and metabolic behavior of the strains, nHF-01 and PPR-01, were studied in different growth conditions and compared with standard strain. The molecular characterization was done by sequencing the ncrDNA ITS1-5.8S-ITS2 and D1-D2 domains of the nc 28S rDNA region and compared with a secondary structure-based phylogenetic tree. The secretory antimicrobials and pigments were characterized by TLC, UV-Vis, and FT-IR spectroscopy. Both the strains showed distinct growth patterns in different nutritional media and could assimilate a wide range of carbohydrates with distinctive biochemical properties. The molecular characterization revealed the strains, nHF-01 and PPR-01, as Aspergillus fumigatus (GenBank Accession No. MN190286 and MN190284, respectively). It was observed that the strain nHF-01 produces red to brownish pigments having mild antimicrobial activity while the strain PPR-01 does not represent such transformations. The extractable compounds had a significant antimicrobial potentiality against the human pathogenic bacteria. From this analysis, it can be concluded that the nHF-01 and PPR-01 strains are distinct from other A. fumigatus by their unique characters. Large-scale production and detailed molecular elucidation of the antimicrobial compounds may lead to the discovery of new antimicrobial compounds from these strains.


Assuntos
Anti-Infecciosos/metabolismo , Aspergillus fumigatus/metabolismo , Anti-Infecciosos/farmacologia , Aspergillus fumigatus/classificação , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Meios de Cultura/química , DNA Fúngico/genética , DNA Ribossômico/genética , Humanos , Filogenia , Pigmentos Biológicos/metabolismo , Pigmentos Biológicos/farmacologia , Análise de Sequência de DNA , Especificidade da Espécie
6.
World J Microbiol Biotechnol ; 36(8): 120, 2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32681377

RESUMO

We studied the production and the potential use of a purple-pigment produced by an Antarctic bacterial isolate. This pigment was identified as violacein, a metabolite produced by many bacterial strains and reported that it has antiproliferative activity in many cell lines. We analyzed the effect of temperature and the composition of the growth medium on pigment production, achieving the highest yield at 20 °C in Tryptic Soy Broth medium supplemented with 3.6 g/L glucose. We doubled the yield of the pigment production when the process was scaled up in a 5 L bioreactor (77 mg/L of crude pigment). The pigment was purified and identified by mass spectrometry (DI-EI-MS) and Nuclear Magnetic Resonance (NMR) spectroscopy as violacein. We performed survival assays that showed that the pure pigment has antiproliferative activity and sensitize HeLa cells (cervix cell carcinoma) to cisplatin. Besides, the pigment did not show genotoxic activity in HeLa cells as found performing micronucleus assays. These results suggest that this pigment may be used as anticancer or sensitizer to cisplatin drug in cervix cancer.


Assuntos
Bactérias/metabolismo , Indóis/metabolismo , Indóis/farmacologia , Pigmentos Biológicos/metabolismo , Pigmentos Biológicos/farmacologia , Regiões Antárticas , Bactérias/isolamento & purificação , Reatores Biológicos , Sobrevivência Celular , Células HeLa , Humanos , Indóis/química , Pigmentos Biológicos/química , Pigmentos Biológicos/isolamento & purificação
7.
Phytochemistry ; 165: 112048, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31229789

RESUMO

For the first time, the pigment composition of basidiocarps from the Chilean mushroom Cortinarius pyromyxa was studied under various aspects like phylogeny, chemistry and antibiotic activity. A molecular biological study supports the monotypic position of C. pyromyxa in subgenus Myxacium, genus Cortinarius. Four undescribed diterpenoids, named pyromyxones A-D, were isolated from fruiting bodies of C. pyromyxa. Their chemical structures were elucidated based on comprehensive one- and two-dimensional NMR spectroscopic analysis, ESI-HRMS measurements, as well as X-ray crystallography. In addition, the absolute configurations of pyromyxones A-D were established with the aid of JH,H, NOESY spectra and quantum chemical CD calculation. The pyromyxones A-D possess the undescribed nor-guanacastane skeleton. Tested pyromyxones A, B, and D exhibit only weak activity against gram-positive Bacillus subtilis and gram-negative Aliivibrio fischeri as well as the phytopathogenic fungi Botrytis cinerea, Septoria tritici and Phytophthora infestans.


Assuntos
Antibacterianos/farmacologia , Cortinarius/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Pigmentos Biológicos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Cristalografia por Raios X , Diterpenos/química , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Filogenia , Pigmentos Biológicos/química , Pigmentos Biológicos/isolamento & purificação , Teoria Quântica
8.
Nat Prod Res ; 33(11): 1541-1549, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29304560

RESUMO

Pigments synthesised by Chryseobacterium sp. kr6 growing on feather waste were extracted and characterised. The pigment extract was characterised by KOH test, UV-vis, CIELAB colour system, HPLC-DAD-MS, FTIR and its antioxidant capacity was evaluated. A positive bathochromic shift was observed when kr6 colonies or pigment extracts were subjected to alkaline solution (20% KOH) and a λmax at 450 nm was detected for acetone extracts, although no typical fine structure of carotenoids was detected in the electomagnetic spectra. The HPLC profile of the extracted pigment showed that the compound has three different peaks with λmax near 450 nm. The FTIR analysis shows some principal functional groups from a flexirubin-like molecule. The pigmented compound also presents antioxidant activity evaluated by the scavenging of the ABTS radical.


Assuntos
Antioxidantes/metabolismo , Chryseobacterium/metabolismo , Pigmentos Biológicos/química , Pigmentos Biológicos/metabolismo , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Carotenoides/análise , Carotenoides/química , Fracionamento Químico , Galinhas , Cromatografia Líquida de Alta Pressão , Chryseobacterium/química , Cor , Plumas/microbiologia , Espectrometria de Massas , Estrutura Molecular , Pigmentos Biológicos/farmacologia , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Biotechnol Prog ; 35(1): e2684, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30006968

RESUMO

The population interest in health products is increasing day-by-day. Thus, the demand for natural products to be added in food and pharmaceutical commodity is also rising. Among these additives, colorants, which provides color to products, can be produced by microorganism through bioprocess. Looking for new source of natural colorants, fungi have been employed to this purpose producing novel and safer natural colorants. So, the main goal of this study was to describe a Talaromyces species able to produce natural colorants and investigate nutritional parameters of colorants production using statistical tool. The taxonomy classified the microorganism as Talaromyces amestolkiae. The statistical design evaluated pH and glucose, meat extract and meat peptone concentration as independent variables, and red colorants production as main response. Under the best condition (g/L: glucose 30, meat extract 1, meat peptone 10, and initial pH of 7.0) an increase of 229% in the red colorant production was achieved as compared with the initial media used. The dried fermented broth containing red colorants showed low cytotoxicity against fibroblasts cells (IC50 > 187.5 g/L) and effective antimicrobial activity against S. aureus (MIC of 2.5 g/L). Thus, T. amestolkiae colorants can be attractive to food and pharmaceutical applications as it does not produce toxic compounds and can promote protection against microorganism contaminants. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2684, 2019.


Assuntos
Pigmentos Biológicos/efeitos adversos , Pigmentos Biológicos/farmacologia , Talaromyces/classificação , Talaromyces/metabolismo , Fermentação , Fibroblastos/efeitos dos fármacos , Filogenia , Pigmentos Biológicos/metabolismo , Staphylococcus aureus/efeitos dos fármacos
10.
Antonie Van Leeuwenhoek ; 112(3): 479-490, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30302647

RESUMO

An iridescent yellow pigmented bacterium isolated from the Antarctic continent, named Cellulophaga fucicola strain 416, was found to be able to tolerate UV-B radiation. Its crude pigment extract was tested for antioxidant capacity, UV light stability and phototoxicity profile against murine fibroblast lines. The pigments were further isolated and chemically identified by ultra-high-performance liquid chromatography with photodiode array and mass spectrometry detectors. The results showed that the pigment extract presented weak stability under exposure to UV light, a phototoxic profile in the 3t3 Neutral Red Uptake test and a very high antioxidant activity, suggesting that it could be used as food and feed colourants. Zeaxanthin and two isomers of zeaxanthin, ß-cryptoxanthin and ß-carotene, were identified using a C18 column. These five carotenoids were the major pigments isolated from C. fucicola 416. In conclusion, the identification of pigments produced by the bacterial strain under study may help us understand how bacteria thrive in high UV and cold environments, and opens avenues for further biotechnological application towards a more sustainable and environmentally friendly way of pigment exploitation.


Assuntos
Antioxidantes/análise , Carotenoides/análise , Flavobacteriaceae/química , Flavobacteriaceae/isolamento & purificação , Pigmentos Biológicos/análise , Animais , Regiões Antárticas , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Carotenoides/química , Carotenoides/isolamento & purificação , Carotenoides/farmacologia , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Flavobacteriaceae/efeitos da radiação , Espectrometria de Massas , Camundongos , Pigmentos Biológicos/química , Pigmentos Biológicos/isolamento & purificação , Pigmentos Biológicos/farmacologia , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA