Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(2)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477389

RESUMO

This study evaluated the chemical compositions of the leaves and fruits of eight black pepper cultivars cultivated in Pará State (Amazon, Brazil). Hydrodistillation and gas chromatography-mass spectrometry were employed to extract and analyze the volatile compounds, respectively. Sesquiterpene hydrocarbons were predominant (58.5-90.9%) in the cultivars "Cingapura", "Equador", "Guajarina", "Iaçará", and "Kottanadan", and "Bragantina", "Clonada", and "Uthirankota" displayed oxygenated sesquiterpenoids (50.6-75.0%). The multivariate statistical analysis applied using volatile composition grouped the samples into four groups: γ-Elemene, curzerene, and δ-elemene ("Equador"/"Guajarina", I); δ-elemene ("Iaçará"/"Kottanadan"/"Cingapura", II); elemol ("Clonada"/"Uthirankota", III) and α-muurolol, bicyclogermacrene, and cubebol ("Bragantina", IV). The major compounds in all fruit samples were monoterpene hydrocarbons such as α-pinene, ß-pinene, and limonene. Among the cultivar leaves, phenolics content (44.75-140.53 mg GAE·g-1 FW), the enzymatic activity of phenylalanine-ammonia lyase (20.19-57.22 µU·mL-1), and carotenoids (0.21-2.31 µg·mL-1) displayed significant variations. Due to black pepper's susceptibility to Fusarium infection, a molecular docking analysis was carried out on Fusarium protein targets using each cultivar's volatile components. F. oxysporum endoglucanase was identified as the preferential protein target of the compounds. These results can be used to identify chemical markers related to the susceptibility degree of black pepper cultivars to plant diseases prevalent in Pará State.


Assuntos
Piper nigrum/metabolismo , Sesquiterpenos/análise , Sesquiterpenos/metabolismo , Brasil , Frutas/química , Frutas/genética , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metaboloma , Simulação de Acoplamento Molecular , Monoterpenos/análise , Monoterpenos/metabolismo , Óleos Voláteis/química , Piper nigrum/genética , Folhas de Planta/genética , Óleos de Plantas/química , Sesquiterpenos/química
2.
Planta ; 252(2): 16, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32661769

RESUMO

MAIN CONCLUSION: A new Piper nigrum cysteine proteinase inhibitor, PnCPI, belonging to group I of phytocystatins, with inhibitory activity against papain and growth of Fusarium solani f. sp. piperis, was isolated and characterized. Previous studies (de Souza et al. 2011) have identified a partial cDNA sequence of putative cysteine proteinase inhibitor differentially expressed in roots of black pepper (P. nigrum L.) infected by F. solani f. sp. piperis. Here, we aimed to isolate the full-length cDNA and genomic sequences of the P. nigrum cysteine proteinase inhibitor gene, named PnCPI. Sequence analyses showed that the PnCPI gene encodes a deduced protein of 108 amino acid residues with a predicted molecular mass of 12.3 kDa and isoelectric point of 6.51. Besides the LARFAV-like sequence, common to all phytocystatins, PnCPI contains three conserved motifs of the superfamily cystatin: a glycine residue at the N-terminal region, the QxVxG reactive site more centrally positioned, and one tryptophan in the C-terminal region. PnCPI, belonging to group I of phytocystatins, showed high identity with cystatins isolated from several plant species. Sequence analyses also revealed no putative signal peptide at the N-terminal of PnCPI, as well as no introns within the genomic sequence corresponding to the PnCPI coding region. Molecular modeling showed the ability of PnCPI to interact with papain, while its inhibitory activity against this protease was confirmed after heterologous expression in Escherichia coli. The effects of heat treatments on the inhibitory activity of recombinant PnCPI, rPnCPI, were evaluated. In addition, rPnCPI exhibited in vitro activity against F. solani f. sp. piperis, revealing a new cystatin with the potential antifungal application. The identification of PnCPI as a functional cystatin able to inhibit the in vitro growth of F. solani f. sp. piperis indicates other factors contributing to in vivo susceptibility of black pepper to root rot disease.


Assuntos
Antifúngicos/farmacologia , Cistatinas/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Fusarium/efeitos dos fármacos , Papaína/antagonistas & inibidores , Piper nigrum/genética , Doenças das Plantas/prevenção & controle , Antifúngicos/isolamento & purificação , Clonagem Molecular , Inibidores de Cisteína Proteinase/isolamento & purificação , DNA Complementar/genética , Fusarium/enzimologia , Piper nigrum/química , Doenças das Plantas/microbiologia
3.
Int J Mol Sci ; 18(12)2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215548

RESUMO

Bragantina and Cingapura are the main black pepper (Piper nigrum L.) cultivars and the Pará state is the largest producer in Brazil with about 90% of national production, representing the third largest production in the world. The infection of Fusarium solani f. sp. piperis, the causal agent of Fusarium disease in black pepper, was monitored on the cultivars Bragantina (susceptible) and Cingapura (tolerant), during 45 days' post infection (dpi). Gas Chromatography-Mass spectrometry (GC-MS) analysis of the volatile concentrates of both cultivars showed that the Bragantina responded with the production of higher contents of α-bisabolol at 21 dpi and a decrease of elemol, mostly at 30 dpi; while Cingapura displayed an decrease of δ-elemene production, except at 15 dpi. The phenolic content determined by the Folin Ciocalteu method showed an increase in the leaves of plants inoculated at 7 dpi (Bragantina) and 7-15 dpi (Cingapura); in the roots, the infection caused a phenolic content decrease in Bragantina cultivar at 45 dpi and an increase in the Cingapura cultivar at 15, 30 and 45 dpi. High Performance Liquid Chromatography-Mass spectrometry (HPLC-MS) analysis of the root extracts showed a qualitative variation of alkamides during infection. The results indicated that there is a possible relationship between secondary metabolites and tolerance against phytopathogens.


Assuntos
Resistência à Doença , Metaboloma , Piper nigrum/metabolismo , Fusarium/patogenicidade , Sesquiterpenos Monocíclicos , Óleos Voláteis/metabolismo , Piper nigrum/genética , Piper nigrum/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Sesquiterpenos/metabolismo
4.
Genet Mol Res ; 15(1)2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-27050963

RESUMO

This study aimed to assess genetic diversity in the germplasm of black pepper from around the world using SSR markers from EST. In total, 13 markers were selected and successfully amplified the target loci across the black pepper germplasm. All the EST-SSR markers showed high levels of polymorphisms with an average polymorphism information content of 0.93. The genetic similarity coefficients among all accessions ranged from 0.724 to 1.000, with an average of 0.867. These results indicated that black pepper germplasms possess a complex genetic background and high genetic diversity. Based on a cluster analysis, 148 black pepper germplasms were grouped in two major clades: the Neotropics and the Asian tropics. Peperomia pellucida was grouped separately and distantly from all other accessions. These results generally agreed with the genetic and geographic distances. However, the Asian tropics clade did not cluster according to their geographic origins. In addition, compared with the American accessions, the Asian wild accessions and cultivated accessions grouped together, indicating a close genetic relationship. This verified the origin of black pepper. The newly developed EST-SSRs are highly valuable resources for the conservation of black pepper germplasm diversity and for black pepper breeding.


Assuntos
Repetições de Microssatélites , Piper nigrum/genética , Polimorfismo Genético , Etiquetas de Sequências Expressas , Especiação Genética , Sementes/genética
5.
Mol Ecol ; 22(8): 2325-40, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23379795

RESUMO

Knowledge on how landscape heterogeneity shapes host-parasite interactions is central to understand the emergence, dynamics and evolution of infectious diseases. However, this is an underexplored subject, particularly for plant-virus systems. Here, we analyse how landscape heterogeneity influences the prevalence, spatial genetic structure, and temporal dynamics of Pepper golden mosaic and Pepper huasteco yellow vein begomoviruses infecting populations of the wild pepper Capsicum annuum glabriusculum (chiltepin) in Mexico. Environmental heterogeneity occurred at different nested spatial scales (host populations within biogeographical provinces), with levels of human management varying among host population within a province. Results indicate that landscape heterogeneity affects the epidemiology and genetic structure of chiltepin-infecting begomoviruses in a scale-specific manner, probably related to conditions favouring the viruses' whitefly vector and its dispersion. Increased levels of human management of the host populations were associated with higher virus prevalence and erased the spatial genetic structure of the virus populations. Also, environmental heterogeneity similarly shaped the spatial genetic structures of host and viruses. This resulted in the congruence between host and virus phylogenies, which does not seem to be due to host-virus co-evolution. Thus, results provide evidence of the key role of landscape heterogeneity in determining plant-virus interactions.


Assuntos
Begomovirus/genética , Evolução Biológica , Piper nigrum/genética , Piper nigrum/virologia , Begomovirus/patogenicidade , Ecossistema , Interações Hospedeiro-Parasita , Humanos , México , Dados de Sequência Molecular , Piper nigrum/crescimento & desenvolvimento , Doenças das Plantas/virologia , Vírus de Plantas/genética
6.
BMC Plant Biol ; 12: 168, 2012 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-22984782

RESUMO

BACKGROUND: Black pepper (Piper nigrum L.) is one of the most popular spices in the world. It is used in cooking and the preservation of food and even has medicinal properties. Losses in production from disease are a major limitation in the culture of this crop. The major diseases are root rot and foot rot, which are results of root infection by Fusarium solani and Phytophtora capsici, respectively. Understanding the molecular interaction between the pathogens and the host's root region is important for obtaining resistant cultivars by biotechnological breeding. Genetic and molecular data for this species, though, are limited. In this paper, RNA-Seq technology has been employed, for the first time, to describe the root transcriptome of black pepper. RESULTS: The root transcriptome of black pepper was sequenced by the NGS SOLiD platform and assembled using the multiple-k method. Blast2Go and orthoMCL methods were used to annotate 10338 unigenes. The 4472 predicted proteins showed about 52% homology with the Arabidopsis proteome. Two root proteomes identified 615 proteins, which seem to define the plant's root pattern. Simple-sequence repeats were identified that may be useful in studies of genetic diversity and may have applications in biotechnology and ecology. CONCLUSIONS: This dataset of 10338 unigenes is crucially important for the biotechnological breeding of black pepper and the ecogenomics of the Magnoliids, a major group of basal angiosperms.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Piper nigrum/genética , Raízes de Plantas/genética , Transcriptoma , Arabidopsis/genética , Arabidopsis/metabolismo , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Biblioteca Gênica , Genoma de Planta , Repetições de Microssatélites , Anotação de Sequência Molecular , Filogenia , Piper nigrum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Proteoma/genética , Proteoma/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Análise de Sequência de RNA , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA