Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37317977

RESUMO

We, herein, investigated the in vitro effects of galactose on the activity of pyruvate kinase, succinate dehydrogenase (SDH), complex II and IV (cytochrome c oxidase) of the respiratory chain and Na+K+-ATPase in the cerebral cortex, cerebellum and hippocampus of 30-day-old rats. We also determined the influence of the antioxidants, trolox, ascorbic acid and glutathione, on the effects elicited by galactose. Galactose was added to the assay at concentrations of 0.1, 3.0, 5.0 and 10.0 mM. Control experiments were performed without galactose. Galactose, at 3.0, 5.0 and 10.0 mM, decreased pyruvate kinase activity in the cerebral cortex and at 10.0 mM in the hippocampus. Galactose, at 10.0 mM, reduced SDH and complex II activities in the cerebellum and hippocampus, and reduced cytochrome c oxidase activity in the hippocampus. Additionally, decreased Na+K+-ATPase activity in the cerebral cortex and hippocampus; conversely, galactose, at 3.0 and 5.0 mM, increased this enzyme's activity in the cerebellum. Data show that galactose disrupts energy metabolism and trolox, ascorbic acid and glutathione addition prevented the majority of alterations in the parameters analyzed, suggesting the use of antioxidants as an adjuvant therapy in Classic galactosemia.


Assuntos
Antioxidantes , Galactose , Ratos , Animais , Antioxidantes/farmacologia , Galactose/metabolismo , Galactose/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons , Piruvato Quinase/metabolismo , Piruvato Quinase/farmacologia , Ratos Wistar , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Metabolismo Energético , Encéfalo/metabolismo , Glutationa/metabolismo , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia
2.
Clin Transl Oncol ; 24(11): 2064-2073, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35781781

RESUMO

Prostate cancer (PCa) is the second leading cause of cancer deaths in men. Unfortunately, a very limited number of drugs are available for the relapsed and advanced stages of PCa, adding only a few months to survival; therefore, it is vital to develop new drugs. 5´ AMP-activated protein kinase (AMPK) is a master regulator of cell metabolism. It plays a significant role in the metabolism of PCa; hence, it can serve well as a treatment option for the advanced stages of PCa. However, whether this pathway contributes to cancer cell survival or death remains unknown. The present study reviews the possible pathways by which AMPK plays role in the advanced stages of PCa, drug resistance, and metastasis: (1) AMPK has a contradictory role in promoting glycolysis and the Warburg effect which are correlated with cancer stem cells (CSCs) survival and advanced PCa. It exerts its effect by interacting with hypoxia-induced factor 1 (HIF1) α, pyruvate kinase 2 (PKM2), glucose transporter (GLUT) 1 and pyruvate dehydrogenase complex (PDHC), which are key regulators of glycolysis; however, whether it promotes or discourage glycolysis is not conclusive. It can also exert an anti-CSC effect by negative regulation of NANOG and epithelial-mesenchymal transition (EMT) transcription factors, which are the major drivers of CSC maintenance; (2) the regulatory effect of AMPK on autophagy is also noticeable. Androgen receptors' expression increases AMPK activation through Calcium/calmodulin-dependent protein kinase 2 (CaMKK2) and induces autophagy. In addition, AMPK itself increases autophagy by downregulating the mammalian target of rapamycin complex (mTORC). However, whether increased autophagy inhibits or promotes cell death and drug resistance is contradictory. This study reveals that there are numerous pathways other than cell metabolism by which AMPK exerts its effects in the advanced stages of PCa, making it a priceless treatment target. Finally, we mention some drugs developed to treat the advanced stages of PCa by acting on AMPK.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias da Próstata , Autofagia , Cálcio/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/farmacologia , Proteínas Facilitadoras de Transporte de Glucose/uso terapêutico , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Complexo Piruvato Desidrogenase/metabolismo , Complexo Piruvato Desidrogenase/farmacologia , Complexo Piruvato Desidrogenase/uso terapêutico , Piruvato Quinase/metabolismo , Piruvato Quinase/farmacologia , Piruvato Quinase/uso terapêutico , Receptores Androgênicos/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA