Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
Neuroscience ; 556: 14-24, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39103041

RESUMO

Major depressive disorder (MDD) has demonstrated its negative impact on various aspects of the lives of those affected. Although several therapies have been developed over the years, it remains a challenge for mental health professionals. Thus, understanding the pathophysiology of MDD is necessary to improve existing treatment options or seek new therapeutic alternatives. Clinical and preclinical studies in animal models of depression have shown the involvement of synaptic plasticity in both the development of MDD and the response to available drugs. However, synaptic plasticity involves a cascade of events, including the action of presynaptic proteins such as synaptophysin and synapsins and postsynaptic proteins such as postsynaptic density-95 (PSD-95). Additionally, several factors can negatively impact the process of spinogenesis/neurogenesis, which are related to many outcomes, including MDD. Thus, this narrative review aims to deepen the understanding of the involvement of synaptic formations and their components in the pathophysiology and treatment of MDD.


Assuntos
Transtorno Depressivo Maior , Plasticidade Neuronal , Humanos , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/fisiopatologia , Animais , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/efeitos dos fármacos
2.
Int Rev Neurobiol ; 177: 121-134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39029982

RESUMO

Alzheimer's disease (AD) stands as the most prevalent form of neuropsychiatric disorder among the elderly population, impacting a minimum of 50 million individuals worldwide. Current pharmacological treatments rely on the prescribing cholinesterase inhibitors and memantine. However,recently anecdotal findings based on low-quality real-world data had prompted physicians, patients, and their relatives to consider the use of cannabinoids, especially Cannabidiol (CBD), for alleviating of AD symptoms. CBD the primary non-psychotomimetic compound found in the Cannabis sp. plant, exhibits promising therapeutic potential across various clinical contexts. Pre-clinical and in vitro studies indicate that CBD could mitigate cognitive decline and amyloid-beta-induced neurodegeneration by modulating oxidative stress and neuroinflammation. In addition, CBD demonstrates significant effects in promoting neuroplasticity, particularly in brain regions such as the hippocampus. However, the available clinical evidence presents conflicting results, and no randomized placebo-controlled trials have been published to date. In conclusion, although pre-clinical and in vitro studies offer encouraging insights into the potential benefits of CBD in AD models, new and well-designed clinical trials are imperative to ascertain the clinical relevance of CBD use in the management of AD symptoms, especially in comparison to conventional treatments.


Assuntos
Doença de Alzheimer , Canabidiol , Canabidiol/uso terapêutico , Canabidiol/farmacologia , Doença de Alzheimer/tratamento farmacológico , Humanos , Animais , Plasticidade Neuronal/efeitos dos fármacos
3.
Braz J Med Biol Res ; 57: e13736, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985082

RESUMO

The present study utilized the spared nerve injury (SNI) to create a mouse model of depression to investigate the impact of esketamine on depressive-like behaviors, on the expression of PSD-95 and CRMP2 proteins, and on changes in neuronal dendritic spine plasticity in the prefrontal cortex (PFC). Depressive-like behavioral tests were performed 1 h after esketamine treatment, and the PFC tissues were obtained on the fourth day after completing the behavioral tests. Then, dendritic spine density and morphology in the PFC were measured using Golgi staining, and CRMP2 and PSD-95 proteins were obtained from PFC tissue by western blotting. The results of this study showed that esketamine significantly increased the immobility time in the forced swimming test and tail suspension test. In the open field test, esketamine increased the time spent in the open arms, the time spent in the central area, and the total distance covered. It also increased the protein expression levels of CRMP2 and PSD-95 in addition to the total and mature dendritic spine density of the PFC in SNI-depressed mice. Esketamine can significantly improve depression-like behaviors in SNI-depressed mice and promote an increase in dendritic spine density and maturation in the PFC. These effects may be associated with changes in CRMP2 and PSD-95 expression.


Assuntos
Espinhas Dendríticas , Depressão , Modelos Animais de Doenças , Ketamina , Plasticidade Neuronal , Córtex Pré-Frontal , Animais , Córtex Pré-Frontal/efeitos dos fármacos , Ketamina/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Masculino , Espinhas Dendríticas/efeitos dos fármacos , Camundongos , Depressão/tratamento farmacológico , Proteínas do Tecido Nervoso/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Neurônios/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Western Blotting
4.
Alzheimers Dement ; 20(8): 5398-5410, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38934107

RESUMO

INTRODUCTION: Impaired brain protein synthesis, synaptic plasticity, and memory are major hallmarks of Alzheimer's disease (AD). The ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) has been shown to modulate protein synthesis, but its effects on memory in AD models remain elusive. METHODS: We investigated the effects of HNK on hippocampal protein synthesis, long-term potentiation (LTP), and memory in AD mouse models. RESULTS: HNK activated extracellular signal-regulated kinase 1/2 (ERK1/2), mechanistic target of rapamycin (mTOR), and p70S6 kinase 1 (S6K1)/ribosomal protein S6 signaling pathways. Treatment with HNK rescued hippocampal LTP and memory deficits in amyloid-ß oligomers (AßO)-infused mice in an ERK1/2-dependent manner. Treatment with HNK further corrected aberrant transcription, LTP and memory in aged APP/PS1 mice. DISCUSSION: Our findings demonstrate that HNK induces signaling and transcriptional responses that correct synaptic and memory deficits in AD mice. These results raise the prospect that HNK could serve as a therapeutic approach in AD. HIGHLIGHTS: The ketamine metabolite HNK activates hippocampal ERK/mTOR/S6 signaling pathways. HNK corrects hippocampal synaptic and memory defects in two mouse models of AD. Rescue of synaptic and memory impairments by HNK depends on ERK signaling. HNK corrects aberrant transcriptional signatures in APP/PS1 mice.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Hipocampo , Ketamina , Camundongos Transgênicos , Plasticidade Neuronal , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Ketamina/análogos & derivados , Ketamina/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Camundongos , Potenciação de Longa Duração/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , RNA Mensageiro/metabolismo , Memória/efeitos dos fármacos , Masculino , Transtornos da Memória/tratamento farmacológico , Camundongos Endogâmicos C57BL , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/genética , Humanos
5.
Neuropharmacology ; 257: 110036, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876308

RESUMO

Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.


Assuntos
Plasticidade Neuronal , Serotonina , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Animais , Serotonina/metabolismo , Serotonina/fisiologia , Humanos , Encéfalo/fisiologia
6.
Neurologia (Engl Ed) ; 39(5): 408-416, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38830720

RESUMO

Ataxias are characterized by aberrant movement patterns closely related to cerebellar dysfunction. Purkinje cell axons are the sole outputs from the cerebellar cortex, and dysfunctional activity of Purkinje cells has been associated with ataxic movements. However, the synaptic characteristics of Purkinje cells in cases of ataxia are not yet well understood. The nicotinamide antagonist 3-acethylpyridine (3-AP) selectively destroys inferior olivary nucleus neurons so it is widely used to induce cerebellar ataxia. Five days after 3-AP treatment (65mg/kg) in adult male Sprague-Dawley rats, motor incoordination was revealed through BBB and Rotarod testing. In addition, in Purkinje cells from lobules V-VII of the cerebellar vermis studied by the Golgi method, the density of dendritic spines decreased, especially the thin and mushroom types. Western blot analysis showed a decrease in AMPA and PSD-95 content with an increase of the α-catenin protein, while GAD-67 and synaptophysin were unchanged. Findings suggest a limited capacity of Purkinje cells to acquire and consolidate afferent excitatory inputs and an aberrant, rigid profile in the movement-related output patterns of Purkinje neurons that likely contributes to the motor-related impairments characteristic of cerebellar ataxias.


Assuntos
Cerebelo , Células de Purkinje , Ratos Sprague-Dawley , Animais , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/patologia , Masculino , Ratos , Cerebelo/efeitos dos fármacos , Ataxia Cerebelar/induzido quimicamente , Piridinas/farmacologia , Plasticidade Neuronal/efeitos dos fármacos
7.
Int. j. morphol ; 42(2): 470-478, abr. 2024. ilus
Artigo em Inglês | LILACS | ID: biblio-1558149

RESUMO

SUMMARY: We evaluated the role and mechanism of acteoside in the regulation of memory impairment induced by chronic unpredictable mild stress (CUMS). CUMS was used to induce depression in rats and the successful establishment of CUMS model were verified by forced swimming test and sucrose preference test. The Y-maze test and novel object recognition test assessed memory functions. The structural changes in the cortex and hippocampus were observed by hematoxylin and eosin (HE) staining. Immunofluorescence staining and western blotting determined the protein levels. Y-maze test and novel object recognition test showed that there was memory performance impairment in rats of CUMS group, which was improved by the acteoside treatment. HE staining showed that CUMS exposure damaged the structure in the cortex and hippocampus, while the acteoside treatment alleviated the structural changes. Compared with the control group, the levels of BNDF and CREB in the cortex and hippocampus of the CUMS group were significantly decreased. Acteoside significantly reversed the expressions of these proteins in CUMS rats. Meanwhile, compared with the control group, the levels of p-mTOR and p- P70S6K in the cortex and hippocampus of the CUMS group were significantly increased, and these changes were significantly reversed by acteoside. Nevertheless, the effect of acteoside on mTOR signaling was markedly blocked by rapamycin, a specific inhibitor of mTOR signaling. Acteoside can attenuate memory impairment and ameliorate neuronal damage and synaptic plasticity in depression rats probably via inhibiting the mTOR signaling pathway. Acteoside may serve as a novel reagent for the prevention of depression.


Evaluamos el papel y el mecanismo del acteoside en la regulación del deterioro de la memoria inducido por estrés leve crónico impredecible (ELCI). Se utilizó ELCI para inducir depresión en ratas y el establecimiento exitoso del modelo ELCI se verificó mediante una prueba de natación forzada y una prueba de preferencia de sacarosa. La prueba del laberinto en Y y la prueba de reconocimiento de objetos novedosos evaluaron las funciones de la memoria. Los cambios estructurales en la corteza y el hipocampo se observaron mediante tinción con hematoxilina y eosina (HE). La tinción por inmunofluorescencia y la transferencia Western determinaron los niveles de proteína. La prueba del laberinto en Y y la prueba de reconocimiento de objetos novedosos mostraron que había un deterioro del rendimiento de la memoria en ratas del grupo ELCI, que mejoró con el tratamiento con acteósidos. La tinción con HE mostró que la exposición a ELCI dañó la estructura de la corteza y el hipocampo, mientras que el tratamiento con actósidos alivió los cambios estructurales. En comparación con el grupo de control, los niveles de BNDF y CREB en la corteza y el hipocampo del grupo ELCI disminuyeron significativamente. Acteoside revirtió significativamente las expresiones de estas proteínas en ratas ELCI. Mientras tanto, en comparación con el grupo control, los niveles de p-mTOR y p-P70S6K en la corteza y el hipocampo del grupo ELCI aumentaron significativamente, y estos cambios fueron revertidos significativamente ELCI por el acteoside. Sin embargo, el efecto del acteoside sobre la señalización de mTOR fue notablemente bloqueado por la rapamicina, un inhibidor específico de la señalización de mTOR. El acteoside puede atenuar el deterioro de la memoria y mejorar el daño neuronal y la plasticidad sináptica en ratas con depresión, probablemente mediante la inhibición de la vía de señalización mTOR. Acteoside puede servir como un reactivo novedoso para la prevención de la depresión.


Assuntos
Animais , Ratos , Depressão/tratamento farmacológico , Polifenóis/administração & dosagem , Glucosídeos/administração & dosagem , Transtornos da Memória/tratamento farmacológico , Estresse Psicológico/complicações , Western Blotting , Imunofluorescência , Ratos Sprague-Dawley , Aprendizagem em Labirinto , Reconhecimento Psicológico/efeitos dos fármacos , Modelos Animais de Doenças , Serina-Treonina Quinases TOR/antagonistas & inibidores , Polifenóis/uso terapêutico , Escala de Avaliação Comportamental , Inibidores de MTOR , Glucosídeos/uso terapêutico , Plasticidade Neuronal/efeitos dos fármacos , Neurônios
8.
Br J Pharmacol ; 181(16): 2701-2724, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38631821

RESUMO

BACKGROUND AND PURPOSE: Transient hypofunction of the NMDA receptor represents a convergence point for the onset and further development of psychiatric disorders, including schizophrenia. Although the cumulative evidence indicates dysregulation of the hippocampal formation in schizophrenia, the integrity of the synaptic transmission and plasticity conveyed by the somatosensorial inputs to the dentate gyrus, the perforant pathway synapses, have barely been explored in this pathological condition. EXPERIMENTAL APPROACH: We identified a series of synaptic alterations of the lateral and medial perforant paths in animals postnatally treated with the NMDA antagonist MK-801. This dysregulation suggests decreased cognitive performance, for which the dentate gyrus is critical. KEY RESULTS: We identified alterations in the synaptic properties of the lateral and medial perforant paths to the dentate gyrus synapses in slices from MK-801-treated animals. Altered glutamate release and decreased synaptic strength precede an impairment in the induction and expression of long-term potentiation (LTP) and CB1 receptor-mediated long-term depression (LTD). Remarkably, by inhibiting the degradation of 2-arachidonoylglycerol (2-AG), an endogenous ligand of the CB1 receptor, we restored the LTD in animals treated with MK-801. Additionally, we showed for the first time, that spatial discrimination, a cognitive task that requires dentate gyrus integrity, is impaired in animals exposed to transient hypofunction of NMDA receptors. CONCLUSION AND IMPLICATIONS: Dysregulation of glutamatergic transmission and synaptic plasticity from the entorhinal cortex to the dentate gyrus has been demonstrated, which may explain the cellular dysregulations underlying the altered cognitive processing in the dentate gyrus associated with schizophrenia.


Assuntos
Giro Denteado , Maleato de Dizocilpina , Plasticidade Neuronal , Via Perfurante , Receptores de N-Metil-D-Aspartato , Animais , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Maleato de Dizocilpina/farmacologia , Via Perfurante/efeitos dos fármacos , Via Perfurante/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Masculino , Ratos , Endocanabinoides/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/antagonistas & inibidores , Ratos Wistar , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos
9.
Behav Brain Res ; 416: 113546, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34437939

RESUMO

Alcohol use disorder needs more effective treatments because relapse rates remain high. Psychedelics, such as ayahuasca, have been used to treat substance use disorders. Our study aimed to evaluate the effects of ayahuasca on ethanol-induced behavioral sensitization (EIBS). Swiss mice received 2.2 g/kg ethanol or saline IP injections every other day across nine days (D1, D3, D5, D7, and D9), and locomotor activity was evaluated 10 min after each injection. Then, animals were treated daily with ayahuasca (corresponding to 1.76 mg/kg of N,N-dimethyltryptamine, DMT) or water by oral gavage for eight consecutive days. On the seventh day, mice were evaluated in the elevated plus maze. Then, mice were challenged with a single dose of ethanol to measure their locomotor activity. Dopamine receptors, serotonin receptors, dynorphin, and prodynorphin levels were quantified in the striatum and hippocampus by blot analysis. Repeated ethanol administration resulted in EIBS. However, those animals treated with ayahuasca had an attenuated EIBS. Moreover, ayahuasca reduced the anxiogenic response to ethanol withdrawal and prevented the ethanol-induced changes on 5-HT1a receptor and prodynorphin levels in the hippocampus and reduced ethanol effects in the dynorphin/prodynorphin ratio levels in the striatum. These results suggest a potential application of ayahuasca to modulate the neuroplastic changes induced by ethanol.


Assuntos
Banisteriopsis/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Bebidas , Etanol/farmacologia , Alucinógenos/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Animais , Alucinógenos/administração & dosagem , Masculino , Camundongos
10.
Neural Plast ; 2021: 9990166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567109

RESUMO

As a classical growth promoter and metabolic regulator, growth hormone (GH) is involved in development of the central nervous system (CNS). This hormone might also act as a neurotrophin, since GH is able to induce neuroprotection, neurite growth, and synaptogenesis during the repair process that occurs in response to neural injury. After an ischemic insult, the neural tissue activates endogenous neuroprotective mechanisms regulated by local neurotrophins that promote tissue recovery. In this work, we investigated the neuroprotective effects of GH in cultured hippocampal neurons exposed to hypoxia-ischemia injury and further reoxygenation. Hippocampal cell cultures obtained from chick embryos were incubated under oxygen-glucose deprivation (OGD, <5% O2, 1 g/L glucose) conditions for 24 h and simultaneously treated with GH. Then, cells were either collected for analysis or submitted to reoxygenation and normal glucose incubation conditions (OGD/R) for another 24 h, in the presence of GH. Results showed that OGD injury significantly reduced cell survival, the number of cells, dendritic length, and number of neurites, whereas OGD/R stage restored most of those adverse effects. Also, OGD/R increased the mRNA expression of several synaptogenic markers (i.e., NRXN1, NRXN3, NLG1, and GAP43), as well as the growth hormone receptor (GHR). The expression of BDNF, IGF-1, and BMP4 mRNAs was augmented in response to OGD injury, and exposure to OGD/R returned it to normoxic control levels, while the expression of NT-3 increased in both conditions. The addition of GH (10 nM) to hippocampal cultures during OGD reduced apoptosis and induced a significant increase in cell survival, number of cells, and doublecortin immunoreactivity (DCX-IR), above that observed in the OGD/R stage. GH treatment also protected dendrites and neurites during OGD, inducing plastic changes reflected in an increase and complexity of their outgrowths during OGD/R. Furthermore, GH increased the expression of NRXN1, NRXN3, NLG1, and GAP43 after OGD injury. GH also increased the BDNF expression after OGD, but reduced it after OGD/R. Conversely, BMP4 was upregulated by GH after OGD/R. Overall, these results indicate that GH protective actions in the neural tissue may be explained by a synergic combination between its own effect and that of other local neurotrophins regulated by autocrine/paracrine mechanisms, which together accelerate the recovery of tissue damaged by hypoxia-ischemia.


Assuntos
Hipóxia Celular/fisiologia , Glucose/deficiência , Hormônio do Crescimento/farmacologia , Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia , Neuroproteção/fisiologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Embrião de Galinha , Galinhas , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA