Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Prep Biochem Biotechnol ; 54(7): 896-909, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38170449

RESUMO

Laccases are polyphenol oxidase enzymes and form the enzyme complex known for their role in wood decomposition and lignin degradation. The present study aimed to systematically review the state-of-the-art trends in scientific publications on laccase enzymes of the last 10 years. The main aspects checked included the laccase-producing fungal genera, the conditions of fungal growth and laccase production, the methods of immobilization, and potential applications of laccase. After applying the systematic search method 177 articles were selected to compound the final database. Although various fungi produce laccase, most studies were Trametes and Pleurotus genera. The submerged fermentation (SmF) has been the most used, however, the use of solid-state fermentation (SSF) appeared as a promising technique to produce laccase when using agro-industrial residues as substrates. Studies on laccase immobilization showed the covalent bonding and entrapment methods were the most used, showing greater efficiency of immobilization and a high number of enzyme reuses. The main use of the laccase was in bioremediation, especially in the discoloration of dyes from the textile industry and the degradation of pharmaceutical waste. Implications and consequences of all these findings in biotechnology and environment, as well as the trends and gaps of laccase research were discussed.


Assuntos
Biotecnologia , Enzimas Imobilizadas , Lacase , Lacase/metabolismo , Lacase/biossíntese , Lacase/química , Biotecnologia/métodos , Enzimas Imobilizadas/metabolismo , Enzimas Imobilizadas/química , Biodegradação Ambiental , Fungos/enzimologia , Fermentação , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Corantes/metabolismo , Corantes/química , Pleurotus/enzimologia
2.
Prep Biochem Biotechnol ; 50(6): 592-597, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32003284

RESUMO

The laccase (Lac), manganese peroxidases (MnP), and lignin peroxidase enzymes produced by basidiomycete have been studied due to their potential in bioremediation, therefore, in this study, degradation of diclofenac (DCF), sulfamethoxazole (SMX), indomethacin (IND), gemfibrozil (GFB), and bezafibrate (BZF) by enzymes produced by Trametes maxima, Pleurotus sp., and Pycnosporus sanguineus grown in culture was evaluated. The degradation of drugs can mainly be attributed to MnP because a correlation between the activity of this enzyme and the degree of removal was found. The specific activity of Lac did not show correlation with drug removal, while lignin peroxidase was not expressed. Trametes maxima showed the highest specific activity of MnP (387.6 ± 67.4 U/mg) and efficiency removal 90.2% of DCF, 72.62% of SMX, 60.76% of IND, 43.39% of GFB, and 32.59% of BZF) followed by Pleurotus sp. with specific activity of MnP of 55.9 ± 8.5 U/mg and 89.47% of DCF, 47.61% of GFB and 73% of IND were removed, P. sanguineus had the lowest specific activity of 18 ± 1.3 U/mg and was able to remove only 42% of SMX and 10.59% of IND. In order to prove that MnP remove drugs instead of Lac, the pure Lac was tested and only degraded DCF.


Assuntos
Bezafibrato/metabolismo , Diclofenaco/metabolismo , Genfibrozila/metabolismo , Indometacina/metabolismo , Lacase/metabolismo , Peroxidases/metabolismo , Pleurotus/enzimologia , Polyporaceae/enzimologia , Sulfametoxazol/metabolismo , Biodegradação Ambiental , Fermentação , Lignina/metabolismo
3.
Braz. arch. biol. technol ; 63: e20190015, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1132271

RESUMO

Abstract (1) Background: Oxygen supply is an important parameter to be considered in submerged cultures. This study evaluated the influence of different conditions for dissolved oxygen (DO) concentration on laccases activities and growth of Pleurotus sajor-caju PS-2001 in submerged process in stirred-tank bioreactor. (2) Methods: Initially, three different conditions were tested: uncontrolled DO and minimum levels of 30% and 80% of saturation, with the pH controlled between 4.5 and 7.0. (3) Results: Best results were observed at 30% DO (26 U mL-1 of laccases at 96 h), whereas higher mycelial biomass was observed at 30% and 80% DO (above 4.5 g L-1). Four different conditions of DO (uncontrolled, 10%, 30% and 50% of saturation) were tested at pH 6.5, with higher laccases activity (80 U mL-1 at 66 h) and lower mycelial growth (1.36 g L-1 at 90 h) being achieved with DO of 30%. In this test, the highest values for volumetric productivity and specific yield factor were determined. Under the different pH conditions tested, the production of laccases is favoured at DO concentration of 30% of saturation, while superior DO levels favours fungal growth. (4) Conclusion: The results indicate that dissolved oxygen concentration is a critical factor for the culture of P. sajor-caju PS-2001 and has important effects not only on laccases production but also on fungal growth.


Assuntos
Oxigênio Dissolvido , Biomassa , Reatores Biológicos , Pleurotus/crescimento & desenvolvimento , Pleurotus/enzimologia , Lacase/biossíntese
4.
Prep Biochem Biotechnol ; 49(1): 58-63, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30388953

RESUMO

In this work were studied the pH, thermal, and storage stability of free and immobilized laccases. Enzymes were produced by Pleurotus ostreatus on potato dextrose (PD) broth and potato dextrose modified (PDM) broth, and immobilized using Luffa cylindrica fibers as support. Both free and immobilized enzymes were assessed on their respective enzymatic activities and for 17α-ethinylestradiol (EE2) degradation. The optimum pH conditions concerning laccase activity ranged from 3.6 to 4.6, while temperature ranged between 30 °C and 50 °C for both free and immobilized enzyme. Laccase produced using PD broth presented greater storage stability and thermal stability than that of PDM. Best EE2 removals were of 79.22% and 75.00% for the free and immobilized enzymes, respectively. Removal rates were assessed during 8 h at pH 5. The removal of 17α-ethinylestradiol was stabilized in the fourth cycle of use. Results imply that immobilization promoted stability towards pH and temperature variations, although media played a decisive role in the enzymatic activity. Both free and immobilized laccases of P. ostreatus were able to degrade EE2, whereas immobilized laccase in PDM medium presented possible reuse applicability, albeit removal was not optimal when compared to other reports.


Assuntos
Poluentes Ambientais/metabolismo , Enzimas Imobilizadas/metabolismo , Etinilestradiol/metabolismo , Lacase/metabolismo , Luffa/metabolismo , Pleurotus/enzimologia , Estabilidade Enzimática , Temperatura Alta , Concentração de Íons de Hidrogênio
5.
Appl Biochem Biotechnol ; 185(2): 434-449, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29178055

RESUMO

In this work, the enzymatic cocktail produced by Pleurotus djamor fungi extracted at pH of 4.8 and 5.3 was employed for castor cake solid-state treatment. Proximal, X-ray powder diffraction and scanning electron microscopy analysis of the pristine castor cake were carried out. First, Pleurotus djamor stain was inoculated in castor cake for the enzymatic production and the enzymatic activity was determined. The maximum enzymatic activity was identified at days 14 (65.9 UI/gss) and 11 (140.3 UI/gss) for the enzymatic cocktail obtained at pH 5.3 and 4.8, respectively. Then, the enzymatic cocktail obtained at the highest enzymatic activity days was employed directly over castor cake. Lignin was degraded throughout incubation time achieving a 47 and 45% decrease for the cocktail produced at pH 4.8 and 5.3, correspondingly. These results were corroborated by the SEM and XRD analysis where a higher porosity and xylan degradation were perceived throughout the enzymatic treatment.


Assuntos
Proteínas Fúngicas/química , Pleurotus/enzimologia , Resíduos Sólidos , Xilanos/química
6.
Biotechnol Prog ; 34(1): 42-50, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28726354

RESUMO

Biological pre-treatment seems to be promising being an eco-friendly process, with no inhibitor generated during the process. The potential for elephant grass pre-treatment with white degradation fungi Pleurotus ostreatus, Agaricus blazei, Lentinula edodes, Pleurotus citrinopileatus, and Pleurotus djamor, in isolated or mixed cultures of these strains, was evaluated. The highest activities of enzymes involved in the degradation of lignocellulosic biomass (laccases, endoglucanases, xylanases, and ß-glucosidases) were observed for A. blazei, L. edodes and the combination of P. ostreatus and A. blazei. In the enzymatic hydrolysis, there was greater release of reducing sugars in the pre-treated elephant grass samples by A. blazei during 10 days (338.91 ± 7.39 mg g-1 of biomass). For this sample, higher lignin reductions, 24.81 and 57.45%, after 15 and 35 days of incubation, respectively, were also verified. These data indicate the potential of macromycetes such as A. blazei to perform biological pre-treatments. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:42-50, 2018.


Assuntos
Agaricus/enzimologia , Cenchrus/química , Lignina/química , Pleurotus/enzimologia , Agaricus/química , Biomassa , Celulase/química , Glucosidases/química , Hidrólise , Lacase/química , Pleurotus/química
7.
Appl Biochem Biotechnol ; 184(3): 794-805, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28866857

RESUMO

Laccases catalyze the oxidation of various aromatic organic compounds concomitantly with molecular oxygen reduction to water. Triphenylmethane dyes are synthetic compounds widely used in diverse industries. Their removal from effluents is difficult, due to their high degree of structural complexity; hence, their high concentration in effluents cause a negative impact on the environment. In the present work, molecular docking was used to evaluate interactions between rGlLCC1 or rPOXA 1B enzymes with Crystal Violet (CV) or Malachite Green (MG) dyes. In addition, removal tests of the two dyes were performed. Van der Waals interactions were obtained for only the CV dye for both GlLCC1 and POXA 1B enzymes. Nevertheless, in the GlLCC1 model, two π-π interactions were observed. For the MG dye only, Van der Waals interactions were obtained. Moreover, amino acid composition interacting in each model with each dye was similar. It is important to highlight that by molecular docking, none of the estimated ligand configurations generated hydrogen bonds. Thus, explaining the difficulty to degrade CV and MG. Regarding CV, maximum decolorization percentage was 23.6 ± 1.0% using Ganoderma lucidum supernatant and 5.0 ± 0.5% with Pleurotus ostreatus supernatant. When using recombinant laccase enzyme concentrates, decolorization percentages were 9.9 ± 0.1 and 7.5 ± 1.0% for rGlLCC1 and rPOXA 1B, respectively. On the other hand, for the MG dye, maximum decolorization percentages were 52.1 ± 5.1 and 2.3 ± 0.2% using G. lucidum and P. ostreatus concentrates, respectively. Whereas with recombinant laccase enzymatic concentrates, values of 9.4 ± 0.8% were obtained, with rGlLCC1, and 2.1 ± 0.1% when using rPOXA 1B. These findings represent an important step in bioremediation processes improvement and efficiency of industry-generated products, using environmentally friendly alternatives.


Assuntos
Proteínas Fúngicas/química , Violeta Genciana/química , Simulação de Acoplamento Molecular , Pleurotus/enzimologia , Reishi/enzimologia , Corantes de Rosanilina/química , Proteínas Fúngicas/genética , Pleurotus/genética , Reishi/genética
8.
J Microbiol ; 55(9): 711-719, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28865071

RESUMO

The objective of this study was to evaluate the potential of eight fungal isolates obtained from soils in rice crops for straw degradation in situ. From the initial eight isolates, Pleurotus ostreatus T1.1 and Penicillium sp. HC1 were selected for further characterization based on qualitative cellulolytic enzyme production and capacity to use rice straw as a sole carbon source. Subsequently, cellulolytic, xylanolytic, and lignolytic (Pleurotus ostreatus) activity on carboxymethyl cellulose, oat xylan, and rice straw with different nitrogen sources was evaluated. From the results obtained it was concluded both isolates are capable to produce enzymes necessary for rice straw degradation. However, their production is dependent upon carbon and nitrogen source. Last, it was established that Pleurotus ostreatus T1.1 and Penicillium sp. HC1 capability to colonize and mineralize rice straw, in mono-and co-culture, without affecting nitrogen soil content.


Assuntos
Celulase/biossíntese , Celulose/metabolismo , Fungos/metabolismo , Oryza/metabolismo , Microbiologia do Solo , Biodegradação Ambiental , Carbono/metabolismo , Celulase/metabolismo , Fungos/classificação , Fungos/enzimologia , Fungos/isolamento & purificação , Hidrólise , Lignina/metabolismo , Penicillium/enzimologia , Penicillium/isolamento & purificação , Penicillium/metabolismo , Caules de Planta/metabolismo , Pleurotus/enzimologia , Pleurotus/isolamento & purificação , Pleurotus/metabolismo
9.
Biomed Res Int ; 2015: 181204, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26180784

RESUMO

Laccases are oxidative enzymes related to the degradation of phenolic compounds, including lignin units, with concomitant reduction of oxygen to water. Delignification is a necessary pretreatment step in the process of converting plant biomass into fermentable sugars. The objective of this work was to optimize the production of laccases and to evaluate the delignification of sugarcane bagasse by Pleurotus ostreatus in solid-state fermentation. Among eight variables (pH, water activity, temperature, and concentrations of CuSO4, (NH4)2SO4, KH2PO4, asparagine, and yeast extract), copper sulfate and ammonium sulfate concentrations were demonstrated to significantly influence laccase production. The replacement of ammonium sulfate by yeast extract and the addition of ferulic acid as inducer provided increases of 5.7- and 2.0-fold, respectively, in laccase activity. Optimization of laccase production as a function of yeast extract, copper sulfate, and ferulic acid concentrations was performed by response surface methodology and optimal concentrations were 6.4 g/L, 172.6 µM, and 1.86 mM, respectively. Experimentally, the maximum laccase activity of 151.6 U/g was produced at the 5th day of solid-state fermentation. Lignin content in sugarcane bagasse was reduced from 31.89% to 26.36% after 5 days and to 20.79% after 15 days by the biological treatment of solid-state fermentation.


Assuntos
Celulose/química , Proteínas Fúngicas/biossíntese , Lacase/biossíntese , Lignina/química , Pleurotus/enzimologia , Saccharum/química
10.
Biomed Res Int ; 2015: 290161, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26180792

RESUMO

Proteases are present in all living organisms and they play an important role in physiological conditions. Cell growth and death, blood clotting, and immune defense are all examples of the importance of proteases in maintaining homeostasis. There is growing interest in proteases due to their use for industrial purposes. The search for proteases with specific characteristics is designed to reduce production costs and to find suitable properties for certain industrial sectors, as well as good producing organisms. Ninety percent of commercialized proteases are obtained from microbial sources and proteases from macromycetes have recently gained prominence in the search for new enzymes with specific characteristics. The production of proteases from saprophytic basidiomycetes has led to the identification of various classes of proteases. The genus Pleurotus has been extensively studied because of its ligninolytic enzymes. The characteristics of this genus are easy cultivation techniques, high yield, low nutrient requirements, and excellent adaptation. There are few studies in the literature about proteases of Pleurotus spp. This review gathers together information about proteases, especially those derived from basidiomycetes, and aims at stimulating further research about fungal proteases because of their physiological importance and their application in various industries such as biotechnology and medicine.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Pleurotus/enzimologia , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA