Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 83: 200-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25245790

RESUMO

The identification of hormonal and biochemical traits that play functional roles in the adaptation to drought is necessary for the conservation and planning of rangeland management. The aim of this study was to evaluate the effects of drought on i) the water content (WC) of different plant organs, ii) the endogenous level of abscisic acid (ABA) and metabolites (phaseic acid-PA, dihydrophaseic acid-DPA and abscisic acid conjugated with glucose ester-ABA-GE), iii) the total carotenoid concentration and iv) to compare the traits of two desert perennial grasses (Pappostipa speciosa and Poa ligularis) with contrasting morphological and functional drought resistance traits and life-history strategies. Both species were subjected to two levels of gravimetric soil moisture (the highest near field capacity during autumn-winter and the lowest corresponding to summer drought). Drought significantly increased the ABA and DPA levels in the green leaves of P. speciosa and P. ligularis. Drought decreased ABA in the roots of P. speciosa while it increased ABA in the roots of P. ligularis. P. ligularis had the highest ABA level and WC in green leaves. While P. speciosa had the highest DPA levels in leaves. In conclusion, we found the highest ABA level in the mesophytic species P. ligularis and the lowest ABA level in the xerophytic species P. speciosa, revealing that the ABA metabolite profile in each grass species is a plastic response to drought resistance.


Assuntos
Ácido Abscísico/metabolismo , Adaptação Fisiológica/fisiologia , Secas , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Poa/metabolismo , Argentina
2.
Conserv Biol ; 26(4): 717-23, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22624790

RESUMO

Few non-native species have colonized Antarctica, although increased human activity and accelerated climate change may increase their number, distributional range, and effects on native species on the continent. We searched 13 sites on the maritime Antarctic islands and 12 sites on the Antarctic Peninsula for annual bluegrass (Poa annua), a non-native flowering plant. We also evaluated the possible effects of competition between P. annua and 2 vascular plants native to Antarctica, Antarctic pearlwort (Colobanthus quitensis) and Antarctic hairgrass (Deschampsia antarctica). We grew the native species in experimental plots with and without annual bluegrass under conditions that mimicked the Antarctic environment. After 5 months, we measured photosynthetic performance on the basis of chlorophyll fluorescence and determined total biomass of both native species. We found individual specimens of annual bluegrass at 3 different sites on the Antarctic Peninsula during the 2007-2008 and 2009-2010 austral summers. The presence of bluegrass was associated with a statistically significant reduction in biomass of pearlwort and hairgrass, whereas the decrease in biomass of bluegrass was not statistically significant. Similarly, the presence of bluegrass significantly reduced the photosynthetic performance of the 2 native species. Sites where bluegrass occurred were close to major maritime routes of scientific expeditions and of tourist cruises to Antarctica. We believe that if current levels of human activity and regional warming persist, more non-native plant species are likely to colonize the Antarctic and may affect native species.


Assuntos
Caryophyllaceae/crescimento & desenvolvimento , Espécies Introduzidas , Poa/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Regiões Antárticas , Caryophyllaceae/metabolismo , Mudança Climática , Atividades Humanas , Humanos , Poa/metabolismo , Poaceae/metabolismo , Estações do Ano , Especificidade da Espécie
3.
J Exp Bot ; 53(378): 2167-76, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12379783

RESUMO

The C(3) grass Poa trivialis and the C(4) grass Panicum maximum were grown in sand culture and received a complete nutrient solution with nitrogen supplied as 1.5 mol m(-3) NH(4)NO(3). (15)N tracer techniques were used to quantify the relative use of root uptake and mobilization in supplying nitrogen to growing leaves in intact plants which either continued to receive nitrogen or which received the complete nutrient solution without nitrogen. The allocation of both (15)N-labelled nitrogen uptake and unlabelled mobilized nitrogen indicated that, under their conditions of growth, the sink strength of growing leaves was relatively greater in P. maximum than P. trivialis. The supply of nitrogen by mobilization to side tillers of P. trivialis was completely stopped as the external nitrogen supply was reduced, whilst in P. maximum some allocation of mobilized nitrogen to side tillers, roots and growing leaves was maintained. In both plant species receiving an uninterrupted supply of nitrogen the allocation pattern of mobilized nitrogen differed from that of nitrogen derived from root uptake. Differences exist in the degree to which P. trivialis and P. maximum utilized uptake and mobilization to supply nitrogen to the growing leaves. In P. trivialis roots were always a net sink of mobilized nitrogen, irrespective of the external nitrogen supply. In P. maximum, roots were a net sink of mobilized nitrogen when external nitrogen was withdrawn, but exhibited both source and sink behaviour when nitrogen supply was continued.


Assuntos
Nitrogênio/farmacologia , Panicum/metabolismo , Estruturas Vegetais/crescimento & desenvolvimento , Poa/metabolismo , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Nitratos/farmacologia , Nitrogênio/metabolismo , Isótopos de Nitrogênio , Panicum/efeitos dos fármacos , Panicum/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Caules de Planta/efeitos dos fármacos , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Estruturas Vegetais/efeitos dos fármacos , Estruturas Vegetais/metabolismo , Poa/efeitos dos fármacos , Poa/crescimento & desenvolvimento , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA