Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 372
Filtrar
1.
PLoS One ; 19(8): e0307573, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39110759

RESUMO

Streptococcus pneumoniae is a bacterium of great global importance, responsible for more than one million deaths per year. This bacterium is commonly acquired in the first years of life and colonizes the upper respiratory tract asymptomatically by forming biofilms that persist for extended times in the nasopharynx. However, under conditions that alter the bacterial environment, such as viral infections, pneumococci can escape from the biofilm and invade other niches, causing local and systemic disease of varying severity. The polyamine transporter PotABCD is required for optimal survival of the organism in the host. Immunization of mice with recombinant PotD can reduce subsequent bacterial colonization. PotD has also been suggested to be involved in pneumococcal biofilm development. Therefore, in this study we aimed to elucidate the role of PotABCD and polyamines in pneumococcal biofilm formation. First, the formation of biofilms was evaluated in the presence of exogenous polyamines-the substrate transported by PotABCD-added to culture medium. Next, a potABCD-negative strain was used to determine biofilm formation in different model systems using diverse levels of complexity from abiotic surface to cell substrate to in vivo animal models and was compared with its wild-type strain. The results showed that adding more polyamines to the medium stimulated biofilm formation, suggesting a direct correlation between polyamines and biofilm formation. Also, deletion of potABCD operon impaired biofilm formation in all models tested. Interestingly, more differences between wild-type and mutant strains were observed in the more complex model, which emphasizes the significance of employing more physiological models in studying biofilm formation.


Assuntos
Biofilmes , Streptococcus pneumoniae , Biofilmes/crescimento & desenvolvimento , Streptococcus pneumoniae/fisiologia , Streptococcus pneumoniae/metabolismo , Animais , Camundongos , Poliaminas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Infecções Pneumocócicas/microbiologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Óperon
2.
Toxins (Basel) ; 16(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38922129

RESUMO

Polyamines (PAs) are polycationic biogenic amines ubiquitously present in all life forms and are involved in molecular signaling and interaction, determining cell fate (e.g., cell proliferation, dif-ferentiation, and apoptosis). The intricate balance in the PAs' levels in the tissues will determine whether beneficial or detrimental effects will affect homeostasis. It's crucial to note that endoge-nous polyamines, like spermine and spermidine, play a pivotal role in our understanding of neu-rological disorders as they interact with membrane receptors and ion channels, modulating neuro-transmission. In spiders and wasps, monoamines (histamine, dopamine, serotonin, tryptamine) and polyamines (spermine, spermidine, acyl polyamines) comprise, with peptides and other sub-stances, the low molecular weight fraction of the venom. Acylpolyamines are venom components exclusively from spiders and a species of solitary wasp, which cause inhibition chiefly of iono-tropic glutamate receptors (AMPA, NMDA, and KA iGluRs) and nicotinic acetylcholine receptors (nAChRs). The first venom acylpolyamines ever discovered (argiopines, Joro and Nephila toxins, and philanthotoxins) have provided templates for the design and synthesis of numerous analogs. Thus far, analogs with high potency exert their effect at nanomolar concentrations, with high se-lectivity toward their ionotropic and ligand receptors. These potent and selective acylpolyamine analogs can serve biomedical purposes and pest control management. The structural modification of acylpolyamine with photolabile and fluorescent groups converted these venom toxins into use-ful molecular probes to discriminate iGluRs and nAchRs in cell populations. In various cases, the linear polyamines, like spermine and spermidine, constituting venom acyl polyamine backbones, have served as cargoes to deliver active molecules via a polyamine uptake system on diseased cells for targeted therapy. In this review, we examined examples of biogenic amines that play an essential role in neural homeostasis and cell signaling, contributing to human health and disease outcomes, which can be present in the venom of arachnids and hymenopterans. With an empha-sis on the spider and wasp venom acylpolyamines, we focused on the origin, structure, derivatiza-tion, and biomedical and biotechnological application of these pharmacologically attractive, chemically modular venom components.


Assuntos
Inseticidas , Poliaminas , Venenos de Aranha , Vespas , Animais , Poliaminas/química , Venenos de Aranha/química , Venenos de Aranha/toxicidade , Inseticidas/farmacologia , Inseticidas/química , Inseticidas/toxicidade , Humanos , Aranhas
3.
Protoplasma ; 261(5): 937-950, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38530427

RESUMO

In plant tissue culture, differences in endogenous levels of species-specific plant growth regulators (PGRs) may explain differences in regenerative capacity. In the case of polyamines (PAs), their dynamics and distribution may vary between species, genotypes, tissues, and developmental pathways, such as sexual reproduction and apomixis. In this study, for the first time, we aimed to assess the impact of varying endogenous PAs levels in seeds from distinct reproductive modes in Miconia spp. (Melastomataceae), on their in vitro regenerative capacity. We quantified the free PAs endogenous content in seeds of Miconia australis (obligate apomictic), Miconia hyemalis (facultative apomictic), and Miconia sellowiana (sexual) and evaluated their in vitro regenerative potential in WPM culture medium supplemented with a combination of 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BAP). The morphogenic responses were characterized by light microscopy and scanning electron microscopy and discussed regarding the endogenous PAs profiles found. Seeds of M. sellowiana presented approximately eight times more putrescine than M. australis, which was associated with a higher percentage of regenerated calluses (76.67%) than M. australis (5.56%). On the other hand, spermine levels were significantly higher in M. australis. Spermine is indicated as an inhibitor of auxin-carrying gene expression, which may have contributed to its lower regenerative capacity under the tested conditions. These findings provide important insights into in vitro morphogenesis mechanisms in Miconia and highlight the significance of endogenous PA levels in plant regeneration. These discoveries can potentially optimize future regeneration protocols in Miconia, a plant group still underexplored in this area.


Assuntos
Melastomataceae , Poliaminas , Regeneração , Sementes , Sementes/fisiologia , Melastomataceae/fisiologia , Melastomataceae/metabolismo , Melastomataceae/química , Poliaminas/metabolismo , Regeneração/fisiologia
4.
Ann Bot ; 133(4): 509-520, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38320313

RESUMO

BACKGROUND AND AIMS: In the subfamily Poöideae (Poaceae), certain grass species possess anti-herbivore alkaloids synthesized by fungal endophytes that belong to the genus Epichloë (Clavicipitaceae). The protective role of these symbiotic endophytes can vary, depending on alkaloid concentrations within specific plant-endophyte associations and plant parts. METHODS: We conducted a literature review to identify articles containing alkaloid concentration data for various plant parts in six important pasture species, Lolium arundinaceum, Lolium perenne, Lolium pratense, Lolium multiflorum|Lolium rigidum and Festuca rubra, associated with their common endophytes. We considered the alkaloids lolines (1-aminopyrrolizidines), peramine (pyrrolopyrazines), ergovaline (ergot alkaloids) and lolitrem B (indole-diterpenes). While all these alkaloids have shown bioactivity against insect herbivores, ergovaline and lolitrem B are harmful for mammals. KEY RESULTS: Loline alkaloid levels were higher in the perennial grasses L. pratense and L. arundinaceum compared to the annual species L. multiflorum and L. rigidum, and higher in reproductive tissues than in vegetative structures. This is probably due to the greater biomass accumulation in perennial species that can result in higher endophyte mycelial biomass. Peramine concentrations were higher in L. perenne than in L. arundinaceum and not affected by plant part. This can be attributed to the high within-plant mobility of peramine. Ergovaline and lolitrem B, both hydrophobic compounds, were associated with plant parts where fungal mycelium is usually present, and their concentrations were higher in plant reproductive tissues. Only loline alkaloid data were sufficient for below-ground tissue analyses and concentrations were lower than in above-ground parts. CONCLUSIONS: Our study provides a comprehensive synthesis of fungal alkaloid variation across host grasses and plant parts, essential for understanding the endophyte-conferred defence extent. The patterns can be understood by considering endophyte growth within the plant and alkaloid mobility. Our study identifies research gaps, including the limited documentation of alkaloid presence in roots and the need to investigate the influence of different environmental conditions.


Assuntos
Alcaloides , Endófitos , Epichloe , Festuca , Lolium , Poliaminas , Alcaloides/metabolismo , Alcaloides/análise , Endófitos/química , Endófitos/fisiologia , Epichloe/química , Epichloe/fisiologia , Ergotaminas/metabolismo , Festuca/microbiologia , Festuca/fisiologia , Herbivoria , Compostos Heterocíclicos com 2 Anéis , Alcaloides Indólicos/metabolismo , Lolium/microbiologia , Lolium/fisiologia , Micotoxinas , Defesa das Plantas contra Herbivoria , Poaceae/microbiologia , Poaceae/metabolismo , Simbiose
5.
ACS Appl Mater Interfaces ; 16(3): 3922-3934, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38061363

RESUMO

A polymeric photosensitizer was synthesized through covalent attachment of the natural photosensitizer 6-carboxypterin (Cap) to a poly(allylamine hydrochloride) (PAH) polymer. The optimization of the functionalization steps and purification procedure is described. The overall yield of the functionalization reaction was 67% to generate the modified polymer (PAH-Cap), featuring a Cap substitution degree of approximately 1% and advantageous spectroscopic properties. Photosensitizing properties of PAH-Cap were observed to occur via both photooxidation mechanisms, i.e., type I and type II. This feature was demonstrated using a biologically relevant target molecule, 2'-deoxyguanosine (dG). The spectroscopic, photophysical, and photochemical behaviors in aqueous environments were studied and compared to Cap. To explore possible further relevant biological applications, experiments with PAH-Cap and dG were carried out at physiological pH. PAH-Cap can generate singlet molecular oxygen and initiate an electron transfer process at pH 7 in air-saturated solutions upon UVA irradiation. Moreover, based on its spectroscopic features, visible light can be used to initiate the photooxidation of biological compounds in water, with many interesting advantages compared to free Cap and other related pteridines. These advantages include an enhancement of the photosensitizing effect at physiological pH and the potential of PAH-Cap for its use as a building block in supramolecular assemblies. The functionalization strategy hereby described can be employed for the preparation of robust photoactive polymers with great potential for its application in photodynamic therapy (PDT) and disinfection technologies.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Poliaminas , Pterinas , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fotoquimioterapia/métodos , Concentração de Íons de Hidrogênio , Polímeros/química , Oxigênio Singlete/química
6.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003659

RESUMO

Polyamines (Pas) are short molecules that exhibit two or three amine groups that are positively charged at a physiological pH. These small molecules are present in high concentrations in a wide variety of organisms and tissues, suggesting that they play an important role in cellular physiology. Polyamines include spermine, spermidine, and putrescine, which play important roles in age-related diseases that have not been completely elucidated. Aging is a natural process, defined as the time-related deterioration of the physiological functions; it is considered a risk factor for degenerative diseases such as cardiovascular, neurodegenerative, and musculoskeletal diseases; arthritis; and even cancer. In this review, we provide a new perspective on the participation of Pas in the cellular and molecular processes related to age-related diseases, focusing our attention on important degenerative diseases such as Alzheimerߣs disease, Parkinsonߣs disease, osteoarthritis, sarcopenia, and osteoporosis. This new perspective leads us to propose that Pas function as novel biomarkers for age-related diseases, with the main purpose of achieving new molecular alternatives for healthier aging.


Assuntos
Poliaminas , Espermidina , Espermina/fisiologia , Putrescina
7.
Syst Biol Reprod Med ; 69(6): 435-449, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37812755

RESUMO

Polyamines are polycationic molecules which contains two or more amino groups (-NH3+) highly charged at physiological pH, and among them we found spermine, spermidine, putrescine, and cadaverine. They interact with proteins, nucleic acids, modulate Ca2+, K+, and Na+ channels, and protect sperm from oxidative stress. In this work, we evaluate the effect of spermine, spermidine, and putrescine on the total, progressive and kinematic parameters of motility, capacitation, acrosome reaction, also in presence and absence of the dbcAMP, an analogue of the cAMP, and the IBMX, a phosphodiesterase inhibitor. In addition, we evaluated the intracellular concentrations of cAMP [cAMP]i, and performed an in silico analysis between polyamines and the sAC from mouse to predict the possible interaction among them. Our results showed that all polyamines decrease drastically the total, progressive and the kinetic parameters of sperm motility, decrease the capacitation, and only spermidine and putrescine impeded the acquisition of acrosome reaction. Moreover, the effect of polyamines was attenuated but not countered by the addition of db-cAMP and IBMX, suggesting a possible inhibition of the sAC. Also, the presence of polyamines induced a decrease of the [cAMP]i, and the in silico analysis predicted a strong interaction among polyamines and the sAC. Overall, the evidence suggests that probably the polyamines interact and inhibit the activity of the sAC.


Assuntos
Poliaminas , Putrescina , Masculino , Animais , Camundongos , Putrescina/farmacologia , Espermidina/farmacologia , Espermina , 1-Metil-3-Isobutilxantina , Motilidade dos Espermatozoides , Sêmen
8.
Braz J Microbiol ; 54(4): 3073-3083, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37702923

RESUMO

Rhizosphere soil of aromatic rice inhabits different fungal species that produce many bioactive metabolites including 2-acetyl-1-pyrroline (2AP). The mechanism for the biosynthesis of 2AP in the fungal system is still elusive. Hence, the present study investigates the role of possible nitrogen (N) precursors such as some amino acids and polyamines as well as the enzymes involved in 2AP synthesis in the fungal species isolated from the rhizosphere of aromatic rice varieties. Three fungal isolates were found to synthesize 2AP (0.32-1.07 ppm) and maximum 2AP was synthesized by Aspergillus niger (1.07 ppm) isolated from rhizosphere of Dehradun Basmati (DB). To determine the N source for 2AP synthesis, various N sources such as proline, glutamate, ornithine putrescine, spermine, and spermidine were used in place of putrescine in the synthetic medium (Syn18). The results showed that maximum 2AP synthesis was found with putrescine (1.07 ppm) followed by spermidine (0.89 ppm) and spermine (0.84 ppm). Further, LC-QTOF-MS analysis revealed the mobilization of spermine and spermidine into the putrescine, indicating that putrescine is the key N source for 2AP synthesis. Moreover, higher enzyme activity of DAO, PAO, and ODC as well as higher content of methylglyoxal metabolite in the A. niger NFCCI 5060 as compared to A. niger NFCCI 4064 (control) suggests the prominent role of these enzymes in the synthesis of 2AP. In conclusion, this study showed evidence of the polyamines mediated 2AP biosynthesis in A. niger NFCCI 5060.


Assuntos
Oryza , Poliaminas , Poliaminas/metabolismo , Espermidina/metabolismo , Putrescina/metabolismo , Espermina/metabolismo , Aspergillus niger/genética , Aspergillus niger/metabolismo , Oryza/metabolismo , Ornitina Descarboxilase/metabolismo
9.
PLoS One ; 18(3): e0283696, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37000792

RESUMO

Leishmania is a protozoan that causes leishmaniasis, a neglected tropical disease with clinical manifestations classified as cutaneous, mucocutaneous, and visceral leishmaniasis. In the infection context, the parasite can modulate macrophage gene expression affecting the microbicidal activity and immune response. The metabolism of L-arginine into polyamines putrescine, spermidine, and spermine reduces nitric oxide (NO) production, favoring Leishmania survival. Here, we investigate the effect of supplementation with L-arginine and polyamines in infection of murine BALB/c macrophages by L. amazonensis and in the transcriptional regulation of genes involved in arginine metabolism and proinflammatory response. We showed a reduction in the percentage of infected macrophages upon putrescine supplementation compared to L-arginine, spermidine, and spermine supplementation. Unexpectedly, deprivation of L-arginine increased nitric oxide synthase (Nos2) gene expression without changes in NO production. Putrescine supplementation increased transcript levels of polyamine metabolism-related genes Arg2, ornithine decarboxylase (Odc1), Spermidine synthase (SpdS), and Spermine synthase (SpmS), but reduced Arg1 in L. amazonensis infected macrophages, while spermidine and spermine promoted opposite effects. Putrescine increased Nos2 expression without leading to NO production, while L-arginine plus spermine led to NO production in uninfected macrophages, suggesting that polyamines can induce NO production. Besides, L-arginine supplementation reduced Il-1b during infection, and L-arginine or L-arginine plus putrescine increased Mcp1 at 24h of infection, suggesting that polyamines availability can interfere with cytokine/chemokine production. Our data showed that putrescine shifts L-arginine-metabolism related-genes on BALB/c macrophages and affects infection by L. amazonensis.


Assuntos
Leishmania , Leishmaniose , Animais , Camundongos , Putrescina/farmacologia , Putrescina/metabolismo , Espermidina/farmacologia , Espermidina/metabolismo , Espermina/metabolismo , Poliaminas/metabolismo , Leishmaniose/tratamento farmacológico , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Óxido Nítrico Sintase/metabolismo , Macrófagos/metabolismo , Arginina/farmacologia , Arginina/metabolismo , Suplementos Nutricionais
10.
Sci Rep ; 13(1): 4279, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922543

RESUMO

Bacterial phytopathogens living on the surface or within plant tissues may experience oxidative stress because of the triggered plant defense responses. Although it has been suggested that polyamines can defend bacteria from this stress, the mechanism behind this action is not entirely understood. In this study, we investigated the effects of oxidative stress on the polyamine homeostasis of the plant pathogen Pseudomonas syringae and the functions of these compounds in bacterial stress tolerance. We demonstrated that bacteria respond to H2O2 by increasing the external levels of the polyamine putrescine while maintaining the inner concentrations of this compound as well as the analogue amine spermidine. In line with this, adding exogenous putrescine to media increased bacterial tolerance to H2O2. Deletion of arginine decarboxylase (speA) and ornithine decarboxylate (speC), prevented the synthesis of putrescine and augmented susceptibility to H2O2, whereas targeting spermidine synthesis alone through deletion of spermidine synthase (speE) increased the level of extracellular putrescine and enhanced H2O2 tolerance. Further research demonstrated that the increased tolerance of the ΔspeE mutant correlated with higher expression of H2O2-degrading catalases and enhanced outer cell membrane stability. Thus, this work demonstrates previously unrecognized connections between bacterial defense mechanisms against oxidative stress and the polyamine metabolism.


Assuntos
Poliaminas , Espermidina , Poliaminas/metabolismo , Espermidina/metabolismo , Putrescina/metabolismo , Pseudomonas syringae/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA