Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Chem Biol Interact ; 351: 109690, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34637778

RESUMO

The currently available treatment options for leishmaniasis are associated with high costs, severe side effects, and high toxicity. In previous studies, thiohydantoins demonstrated some pharmacological activities and were shown to be potential hit compounds with antileishmanial properties. The present study further explored the antileishmanial effect of acetyl-thiohydantoins against Leishmania amazonensis and determined the main processes involved in parasite death. We observed that compared to thiohydantoin nuclei, acetyl-thiohydantoin treatment inhibited the proliferation of promastigotes. This treatment caused alterations in cell cycle progression and parasite size and caused morphological and ultrastructural changes. We then investigated the mechanisms involved in the death of the protozoan; there was an increase in ROS production, phosphatidylserine exposure, and plasma membrane permeabilization and a loss of mitochondrial membrane potential, resulting in an accumulation of lipid bodies and the formation of autophagic vacuoles on these parasites and confirming an apoptosis-like process. In intracellular amastigotes, selected acetyl-thiohydantoins reduced the percentage of infected macrophages and the number of amastigotes/macrophages by increasing ROS production and reducing TNF-α levels. Moreover, thiohydantoins did not induce cytotoxicity in murine macrophages (J774A.1), human monocytes (THP-1), or sheep erythrocytes. In silico and in vitro analyses showed that acetyl-thiohydantoins exerted in vitro antileishmanial effects on L. amazonensis promastigotes in apoptosis-like and amastigote forms by inducing ROS production and reducing TNF-α levels, indicating that they are good candidates for drug discovery studies in leishmaniasis treatment. Additionally, we carried out molecular docking analyses of acetyl-thiohydantoins on two important targets of Leishmania amazonensis: arginase and TNF-alpha converting enzyme. The results suggested that the acetyl groups in the N1-position of the thiohydantoin ring and the ring itself could be pharmacophoric groups due to their affinity for binding amino acid residues at the active site of both enzymes via hydrogen bond interactions. These results demonstrate that thiohydantoins are promising hit compounds that could be used as antileishmanial agents.


Assuntos
Tioidantoínas/farmacologia , Tripanossomicidas/farmacologia , Proteína ADAM17/metabolismo , Animais , Arginase/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Leishmania/efeitos dos fármacos , Leishmania/enzimologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Simulação de Acoplamento Molecular , Proteínas de Protozoários/metabolismo , Ovinos , Tioidantoínas/síntese química , Tioidantoínas/metabolismo , Tioidantoínas/toxicidade , Tripanossomicidas/síntese química , Tripanossomicidas/metabolismo , Tripanossomicidas/toxicidade , Fator de Necrose Tumoral alfa/metabolismo
2.
Life Sci ; 285: 119949, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34543640

RESUMO

AIMS: Swietenia macrophylla have been considered for the treatment of various diseases, including anticancer activity. This study aimed to investigate the anticancer activity of S. macrophylla leaves extract and its isolated compound towards human colorectal cancer cell line. MAIN METHODS: Hexanic extract of S. macrophylla leaves demonstrated relevant cytotoxicity only against colon cancer cell line HCT116. KEY FINDINGS: Our results showed significant DNA damage and apoptosis after treatment with the hexanic extract of S. macrophylla. Moreover, no toxicity was noticed for the animal model. The isolated compound limonoid L1 showed potent cytotoxicity against cancer cell lines with IC50 at 55.87 µg mL-1. Limonoid L1 did not trigger any cell membrane rupture in the mice erythrocytes suggesting no toxicity. The antiproliferative effect of L1 was confirmed in colorectal cancer cells by clonogenic assay, inducing G2/M arrest, apoptosis, and DNA damage in cancer-type cells. SIGNIFICANCE: L1 reduced BCL2 and increased ATM, CHK2, TP53, ARF, CDK1, CDKN1A, and CASP3 in the colorectal cancer cell line. These findings suggest that limonoid L1 isolated from S. macrophylla can be a promising anticancer agent in managing colorectal cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Colorretais/patologia , Dano ao DNA , Limoninas/farmacologia , Meliaceae/química , Animais , Neoplasias Colorretais/metabolismo , Eritrócitos/efeitos dos fármacos , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HCT116 , Hemólise , Humanos , Limoninas/isolamento & purificação , Limoninas/uso terapêutico , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia
3.
Chem Biol Interact ; 344: 109535, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34051208

RESUMO

Imatinib, a specific Bcr-Abl tyrosine kinase inhibitor, is the most commonly used drug in the treatment of chronic myeloid leukemia. However, optimal response is not achieved in up to 33% of patients. Therefore, development of novel therapeutic strategies for chronic myeloid leukemia is critical. Betulinic (1) and ursolic (2) acids are natural pentacyclic triterpenes that exhibit antileukemic activities. In this study, we evaluated the effects of pharmacomodulations at the C-3 position of the triterpene moiety of betulinic and ursolic acids on their activity against K562 leukemia cells. Six new derivatives (1a-2c) were synthesized and evaluated for pro-apoptotic and anti-proliferative effects in mammalian and leukemic cells. 2c derivative containing an amine group at the C-3 position of ursolic acid was the most active against leukemia cells with an IC50 value of 5.2 µM after 48 h of treatment. 2c did not exhibit cytotoxic effects against VERO and HepG2 cells and human lymphocytes, showing a good selectivity index for cancer over normal cells. Induced cell death by apoptosis via caspases 3 and 8, and also caused cell cycle arrest as evidenced by accumulation of cells in the G1 phase and decreased cell population in the G2 phase. Furthermore, co-treatment of 2c with imatinib, the chemotherapy drug most commonly used to treat leukemia, resulted in a synergistic effect. Our findings provide a strong rationale for further investigation of combination therapy using the 2c derivative and imatinib in pre-clinical studies.


Assuntos
Antineoplásicos/farmacologia , Mesilato de Imatinib/farmacologia , Triterpenos/farmacologia , Animais , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 8/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chlorocebus aethiops , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Triterpenos/síntese química , Células Vero , Ácido Ursólico
4.
Clin Transl Oncol ; 23(9): 1847-1856, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33821368

RESUMO

BACKGROUND: Hepatocellular carcinoma is one of the most common malignancies and leading cancer-associated deaths worldwide. Ozone has been proposed as a promising therapeutic agent in the treatment of various disorders. PURPOSE: The purpose of this paper is to assess the potential anticancer effects of the ozone on liver cancer cells. METHOD: The liver cancer cell line of bel7402 and SMMC7721 was used in this study. Proliferation was evaluated using the CCK-8 and the colony formation assay. Wond healing assay and transwell assay without Matrigel were used to evaluate their migration ability. Flow cytometry was used for cell cycle analysis and reactive oxygen species (ROS) determination. Glutathione detection kit was used for measurement of glutathione level. Protein expression was estimated by western blot analysis. RESULTS: Ozone treatment inhibited liver cancer cell proliferation, colony formation. Ozone induced G2/M phase cell cycle arrest, which could be elucidated by the change of protein levels of p53, p21, Cyclin D1, cyclin B1, cdc2, and CDK4. We also found that ozone treatment inhibited migration ability by inhibiting EMT-relating protein. Ozone also induced ROS accumulation and decreased glutathione level decreased, which contributed to the inactivation of the PI3K/AKT/NF-κB pathway. Finally, we found that pre-treatment of liver cancer cells with N-acetylcysteine resisted ozone-induced effects. CONCLUSIONS: Ozone restrains the proliferation and migration potential and EMT process of liver cancer cells via ROS accumulation and PI3K/AKT/NF-κB suppression.


Assuntos
Carcinoma Hepatocelular/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Ozônio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ensaio Tumoral de Célula-Tronco
5.
Eur J Pharmacol ; 899: 174028, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33727055

RESUMO

Prostate cancer is among the most common cancer diagnoses in men, and the best treatment for patients with metastatic disease in advanced stages is still unclear. Previously, we have demonstrated that the three 1-(3-(aryl-4,5-dihydroisoxazol-5-yl)methyl)-4-trihalomethyl-1H-pyrimidin-2- ones derivatives (8a, 8e and 9c) present important cytotoxicity and selectivity for tumoral cells. Considering that various cytotoxic drugs have been assessed in patients with prostate cancer, but few drugs show survival advantage, we decided to study these three compounds (8a, 8e and 9c) in prostate cancer cells, androgen receptor (AR)-positive 22Rv-1 and AR-negative PC-3 cells. We obtained the half maximal inhibitory concentration (IC50) of 8a, 8e and 9c in prostate cancer cells and based on high selectivity of 9c to PC-3 cells, we determined the mechanism of this compound to induce cell death through different methods. We show here that 9c compound induces cell cycle arrest in G2/M, increasing the levels of reactive oxygen species and DNA damage, and triggers DNA damage response by ataxia-telangiectasia mutated (ATM) and histone H2AX phosphorylation induction. The compound also led PC-3 to lipid peroxidation and mitochondrial depolarization which triggered the activation of intrinsic pathway, confirmed by increase of cleaved caspase-9 and 3. In this work we also show the ability of 9c in reducing vascular endothelial growth factor expression (VEGF) and inhibiting topoisomerase I enzyme, therefore indicating a potential new molecule to be further investigated for prostate cancer management.


Assuntos
Inibidores da Angiogênese/farmacologia , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neovascularização Patológica , Neoplasias da Próstata/tratamento farmacológico , Pirimidinonas/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , Regulação para Baixo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Histonas/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Células PC-3 , Fosforilação , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Inibidores da Topoisomerase I/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Exp Dermatol ; 30(5): 710-716, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33523510

RESUMO

Combined 5-fluorouracil (5-FU) and melittin (MEL) is believed to enhance cytotoxic effects on skin squamous cell carcinoma (SCC). However, the rationale underlying cytotoxicity is fundamentally important for a proper design of combination chemotherapy, and to provide translational insights for future therapeutics in the dermatology field. The aim was to elucidate the effects of 5-FU/MEL combination on the viability, proliferation and key structures of human squamous cell carcinoma (A431). Morphology, plasma membrane, DNA, mitochondria, oxidative stress, cell viability, proliferation and cell death pathways were targeted for investigation by microscopy, MTT, trypan blue assay, flow cytometry and real-time cell analysis. 5-FU/MEL (0.25 µM/0.52 µM) enhanced the cytotoxic effect in A431 cells (74.46%, p < .001) after 72 h exposure, showing greater cytotoxic effect when compared to each isolated compound (45.55% 5-FU and 61.78% MEL). The results suggest that MEL induces plasma membrane alterations that culminate in a loss of integrity at subsequent times, sensitizing the cell to 5-FU action. DNA fragmentation, S and G2/M arrest, disruption of mitochondrial metabolism, and alterations in cell morphology culminated in proliferation blockage and apoptosis. 5-FU/MEL combination design optimizes the cytotoxic effects of each drug at lower concentrations, which may represent an innovative strategy for SCC therapy.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Fluoruracila/farmacologia , Meliteno/farmacologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/patologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Resultado do Tratamento , Regulação para Cima
7.
Clin Transl Oncol ; 23(4): 718-730, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32715386

RESUMO

BACKGROUND: With 9.6 million deaths in 2018, cancer remains the second leading cause of death worldwide. Breast cancer is the most deadly type of cancer among females, with 55.2% of crude incidence rate and 16.6% of crude mortality rate. PURPOSE: The present study was aimed to investigate the anti-breast cancer potential of natural dietary flavonoid, apigenin isolated from Clerodendrum viscosum leaves. METHODS: Apigenin was evaluated for in-depth anticancer activity in MCF-7 cells using cell viability assay, cell cycle analysis, Annexin-V-FLUOS staining, ROS induction, morphological analysis, and western blot analysis. RESULTS: Apigenin showed selective cytotoxicity on MCF-7 cells with an IC50-56.72 ± 2.35 µM, while negligible cytotoxicity was observed on WI-38 cells. Further, the flow cytometer-based analysis showed that apigenin halted MCF-7 cells in the G2/M phase arrest followed by dose-dependent apoptosis. Moreover, the FACS and confocal microscopy results confirmed the elevation of intracellular ROS and nuclear fragmentation in apigenin-treated MCF-7 cells. Western blots showed up-regulation of cell cycle regulatory proteins, increased p53 expression, Bax/Bcl-2 ratio, activation of caspases, and cleavage of PARP. Finally, apigenin treatment in the presence of Pifithrin-µ showed decreased apoptotic population and it was further confirmed through western blotting study. The results revealed the vital role of p53 in apigenin-induced apoptosis in MCF-7 cells. CONCLUSIONS: In the present findings, treatment of apigenin-induced intracellular ROS in MCF-7 cells followed by induction of G2/M phase cell cycle arrest and further apoptosis through the regulation of p53 and caspase-cascade signaling pathway.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apigenina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Caspases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Apigenina/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Núcleo Celular/efeitos dos fármacos , Clerodendrum/química , Fragmentação do DNA , Feminino , Citometria de Fluxo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Células MCF-7 , Folhas de Planta/química , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores
8.
Int J Mol Sci ; 21(21)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182324

RESUMO

BACKGROUND: The relationship between glioblastoma (GBM) and fatty acid metabolism could be the key to elucidate more effective therapeutic targets. 15-lipoxygenase-1 (15-LOX), a linolenic acid and arachidonic acid metabolizing enzyme, induces both pro- and antitumorigenic effects in different cancer types. Its role in glioma activity has not yet been clearly described. The objective of this study was to identify the influence of 15-LOX and its metabolites on glioblastoma cell activity. METHODS: GBM cell lines were examined using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to identify 15-LOX metabolites. GBM cells treated with 15-LOX metabolites, 13-hydroxyoctadecadeinoic acid (HODE) and 9-HODE, and two 15-LOX inhibitors (luteolin and nordihydroguaiaretic acid) were also examined. Dose response/viability curves, RT-PCRs, flow cytometry, migration assays, and zymograms were performed to analyze GBM growth, migration, and invasion. RESULTS: Higher quantities of 13-HODE were observed in five GBM cell lines compared to other lipids analyzed. Both 13-HODE and 9-HODE increased cell count in U87MG. 15-LOX inhibition decreased migration and increased cell cycle arrest in the G2/M phase. CONCLUSION: 15-LOX and its linoleic acid (LA)-derived metabolites exercise a protumorigenic influence on GBM cells in vitro. Elevated endogenous levels of 13-HODE called attention to the relationship between linoleic acid metabolism and GBM cell activity.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Inibidores de Lipoxigenase/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Glioma/tratamento farmacológico , Glioma/metabolismo , Humanos , Ácido Linoleico/metabolismo , Ácidos Linoleicos/metabolismo , Ácidos Linoleicos Conjugados/metabolismo
9.
Toxins (Basel) ; 12(9)2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971938

RESUMO

Since Rhinella sp. toads produce bioactive substances, some species have been used in traditional medicine and magical practices by ancient cultures in Peru. During several decades, the Rhinella horribilis toad was confused with the invasive toad Rhinella marina, a species documented with extensive toxinological studies. In contrast, the chemical composition and biological effects of the parotoid gland secretions (PGS) remain still unknown for R. horribilis. In this work, we determine for the first time 55 compounds from the PGS of R. horribilis, which were identified using HPLC-MS/MS. The crude extract inhibited the proliferation of A549 cancer cells with IC50 values of 0.031 ± 0.007 and 0.015 ± 0.001 µg/mL at 24 and 48 h of exposure, respectively. Moreover, it inhibited the clonogenic capacity, increased ROS levels, and prevented the etoposide-induced apoptosis, suggesting that the effect of R. horribilis poison secretion was by cell cycle blocking before of G2/M-phase checkpoint. Fraction B was the most active and strongly inhibited cancer cell migration. Our results indicate that the PGS of R. horribilis are composed of alkaloids, bufadienolides, and argininyl diacids derivatives, inhibiting the proliferation and migration of A549 cells.


Assuntos
Venenos de Anfíbios/farmacologia , Antineoplásicos/farmacologia , Bufonidae/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Glândula Parótida/metabolismo , Células A549 , Venenos de Anfíbios/metabolismo , Animais , Antineoplásicos/isolamento & purificação , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Invasividade Neoplásica , Espécies Reativas de Oxigênio/metabolismo , Via Secretória
10.
Anticancer Agents Med Chem ; 20(6): 734-750, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32013837

RESUMO

BACKGROUND: Pisosterol, a triterpene derived from Pisolithus tinctorius, exhibits potential antitumor activity in various malignancies. However, the molecular mechanisms that mediate the pisosterol-specific effects on glioma cells remain unknown. OBJECTIVE: This study aimed to evaluate the antitumoral effects of pisosterol on glioma cell lines. METHODS: The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and trypan blue exclusion assays were used to evaluate the effect of pisosterol on cell proliferation and viability in glioma cells. The effect of pisosterol on the distribution of the cells in the cell cycle was performed by flow cytometry. The expression and methylation pattern of the promoter region of MYC, ATM, BCL2, BMI1, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, MDM2, p14ARF and TP53 was analyzed by RT-qPCR, western blotting and bisulfite sequencing PCR (BSP-PCR). RESULTS: Here, it has been reported that pisosterol markedly induced G2/M arrest and apoptosis and decreased the cell viability and proliferation potential of glioma cells in a dose-dependent manner by increasing the expression of ATM, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, p14ARF and TP53 and decreasing the expression of MYC, BCL2, BMI1 and MDM2. Pisosterol also triggered both caspase-independent and caspase-dependent apoptotic pathways by regulating the expression of Bcl-2 and activating caspase-3 and p53. CONCLUSION: It has been, for the first time, confirmed that the ATM/ATR signaling pathway is a critical mechanism for G2/M arrest in pisosterol-induced glioma cell cycle arrest and suggests that this compound might be a promising anticancer candidate for further investigation.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Glioma/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Terpenos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Basidiomycota/química , Linhagem Celular Tumoral , Glioma/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA