Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612891

RESUMO

The domestication process of the common bean gave rise to six different races which come from the two ancestral genetic pools, the Mesoamerican (Durango, Jalisco, and Mesoamerica races) and the Andean (New Granada, Peru, and Chile races). In this study, a collection of 281 common bean landraces from Chile was analyzed using a 12K-SNP microarray. Additionally, 401 accessions representing the rest of the five common bean races were analyzed. A total of 2543 SNPs allowed us to differentiate a genetic group of 165 accessions that corresponds to the race Chile, 90 of which were classified as pure accessions, such as the bean types 'Tórtola', 'Sapito', 'Coscorrón', and 'Frutilla'. Our genetic analysis indicates that the race Chile has a close relationship with accessions from Argentina, suggesting that nomadic ancestral peoples introduced the bean seed to Chile. Previous archaeological and genetic studies support this hypothesis. Additionally, the low genetic diversity (π = 0.053; uHe = 0.53) and the negative value of Tajima' D (D = -1.371) indicate that the race Chile suffered a bottleneck and a selective sweep after its introduction, supporting the hypothesis that a small group of Argentine bean genotypes led to the race Chile. A total of 235 genes were identified within haplotype blocks detected exclusively in the race Chile, most of them involved in signal transduction, supporting the hypothesis that intracellular signaling pathways play a fundamental role in the adaptation of organisms to changes in the environment. To date, our findings are the most complete investigation associated with the origin of the race Chile of common bean.


Assuntos
Phaseolus , Phaseolus/genética , Chile , Argentina , Domesticação , Pool Gênico
2.
Braz J Biol ; 83: e278807, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422273

RESUMO

In the pursuit of enhanced mutton production, improving the genetic reservoir of sheep with early maturation and high meat productivity is imperative. This study aims to assess the efficacy of integrating Dorper and Hissar rams into the breeding program of Kazakh fat-tailed coarse-haired ewes for generating young mutton. The research involved forming three groups, each comprising 40 ewes of the Kazakh fat-tailed coarse-haired breed, based on analog pairs. Ewes in Group I were inseminated with Dorper ram semen, those in Group II were inseminated with Hissar ram semen, and Group III served as a control with purebred Kazakh fat-tailed coarse-haired sheep breeding. Results revealed that crossbred rams in Group II achieved a significantly higher live weight of 45.2 kg at 120 days of age, surpassing the other groups by 9.7 kg and 10.6 kg. Crossbred gimmers in Group II reached a live weight of 42.0 kg by 4 months, outpacing the other groups by 12.2 kg. The crossbred lambs exhibited an expansive, deep, and sturdy physique, indicative of elevated meat productivity. Physique index analysis displayed that crossbred rams exhibited elongated limbs, bulkiness, and massiveness compared to purebred Kazakh fat-tailed coarse-haired lambs. In the 4.0-4.5-month age range, crossbred rams demonstrated a higher carcass muscle yield than their purebred counterparts, albeit the latter exhibited a 0.18% greater bone yield. Moreover, the meat of groups I and II sheep contained 19.6% and 20.1% protein content, respectively, surpassing the local Kazakh fat-tailed sheep population by 0.7% and 1.2% in absolute terms.


Assuntos
Pool Gênico , Carneiro Doméstico , Ovinos/genética , Animais , Masculino , Feminino , Carneiro Doméstico/genética , Carne , Hibridização Genética , Músculos
3.
Mol Phylogenet Evol ; 193: 108013, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38195012

RESUMO

The speciation continuum is the process by which genetic groups diverge until they reach reproductive isolation. It has become common in the literature to show that this process is gradual and flickering, with possibly many instances of secondary contact and introgression after divergence has started. The level of divergence might vary among genomic regions due to, among others, the different forces and roles of selection played by the shared regions. Through hybrid capture, we sequenced ca. 4,000 nuclear regions in populations of six species of wax palms, five of which form a monophyletic group (genus Ceroxylon, Arecaceae: Ceroxyloideae). We show that in this group, the different populations show varying degrees of introgressive hybridization, and two of them are backcrosses of the other three 'pure' species. This is particularly interesting because these three species are dioecious, have a shared main pollinator, and have slightly overlapping reproductive seasons but highly divergent morphologies. Our work supports shows wax palms diverge under positive and background selection in allopatry, and hybridize due to secondary contact and inefficient reproductive barriers, which sustain genetic diversity. Introgressed regions are generally not under positive selection. Peripheral populations are backcrosses of other species; thus, introgressive hybridization is likely modulated by demographic effects rather than selective pressures. In general, these species might function as an 'evolutionary syngameon' where expanding, peripheral, small, and isolated populations maintain diversity by crossing with available individuals of other wax palms. In the Andean context, species can benefit from gained variation from a second taxon or the enhancement of population sizes by recreating a common genetic pool.


Assuntos
Arecaceae , Introgressão Genética , Humanos , Filogenia , Pool Gênico , Evolução Biológica , Isolamento Reprodutivo , Arecaceae/genética , Hibridização Genética , Fluxo Gênico , Especiação Genética
4.
New Phytol ; 233(1): 534-545, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34537964

RESUMO

The genus Manihot, with around 120 known species, is native to a wide range of habitats and regions in the tropical and subtropical Americas. Its high species richness and recent diversification only c. 6 million years ago have significantly complicated previous phylogenetic analyses. Several basic elements of Manihot evolutionary history therefore remain unresolved. Here, we conduct a comprehensive phylogenomic analysis of Manihot, focusing on exhaustive sampling of South American taxa. We find that two recently described species from northeast Brazil's Atlantic Forest were the earliest to diverge, strongly suggesting a South American common ancestor of Manihot. Ancestral state reconstruction indicates early Manihot diversification in dry forests, with numerous independent episodes of new habitat colonization, including into savannas and rainforests within South America. We identify the closest wild relatives to Manihot esculenta, including the crop cassava, and we quantify extensive wild introgression into the cassava gene pool from at least five wild species, including Manihot glaziovii, a species used widely in breeding programs. Finally, we show that this wild-to-crop introgression substantially shapes the mutation load in cassava. Our findings provide a detailed case study for neotropical evolutionary history in a diverse and widespread group, and a robust phylogenomic framework for future Manihot and cassava research.


Assuntos
Manihot , Evolução Biológica , Pool Gênico , Manihot/genética , Filogenia , América do Sul
5.
Genes (Basel) ; 12(12)2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34946870

RESUMO

The Isthmus of Panama was a crossroads between North and South America during the continent's first peopling (and subsequent movements) also playing a pivotal role during European colonization and the African slave trade. Previous analyses of uniparental systems revealed significant sex biases in the genetic history of Panamanians, as testified by the high proportions of Indigenous and sub-Saharan mitochondrial DNAs (mtDNAs) and by the prevalence of Western European/northern African Y chromosomes. Those studies were conducted on the general population without considering any self-reported ethnic affiliations. Here, we compared the mtDNA and Y-chromosome lineages of a new sample collection from 431 individuals (301 males and 130 females) belonging to either the general population, mixed groups, or one of five Indigenous groups currently living in Panama. We found different proportions of paternal and maternal lineages in the Indigenous groups testifying to pre-contact demographic events and genetic inputs (some dated to Pleistocene times) that created genetic structure. Then, while the local mitochondrial gene pool was marginally involved in post-contact admixtures, the Indigenous Y chromosomes were differentially replaced, mostly by lineages of western Eurasian origin. Finally, our new estimates of the sub-Saharan contribution, on a more accurately defined general population, reduce an apparent divergence between genetic and historical data.


Assuntos
Cromossomos Humanos Y , DNA Mitocondrial , Variação Genética , Povos Indígenas/genética , Grupos Raciais/genética , África Subsaariana , População Negra/genética , Feminino , Pool Gênico , Genótipo , Humanos , Masculino , Panamá , Linhagem , Análise de Sequência de DNA
6.
Genes (Basel) ; 12(9)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34573435

RESUMO

Mexico is a rich source for anthropological and population genetic studies with high diversity in ethnic and linguistic groups. The country witnessed the rise and fall of major civilizations, including the Maya and Aztec, but resulting from European colonization, the population landscape has dramatically changed. Today, the majority of Mexicans do not identify themselves as Indigenous but as admixed, and appear to have very little in common with their pre-Columbian predecessors. However, when the maternally inherited mitochondrial (mt)DNA is investigated in the modern Mexican population, this is not the case. Control region sequences of 2021 samples deriving from all over the country revealed an overwhelming Indigenous American legacy, with almost 90% of mtDNAs belonging to the four major pan-American haplogroups A2, B2, C1, and D1. This finding supports a very low European contribution to the Mexican gene pool by female colonizers and confirms the effectiveness of employing uniparental markers as a tool to reconstruct a country's history. In addition, the distinct frequency and dispersal patterns of Indigenous American and West Eurasian clades highlight the benefit such large and country-wide databases provide for studying the impact of colonialism from a female perspective and population stratification. The importance of geographical database subsets not only for forensic application is clearly demonstrated.


Assuntos
DNA Mitocondrial/genética , Genética Populacional , População Negra/genética , Feminino , Pool Gênico , Haplótipos , Humanos , Masculino , México , Filogeografia , Controle de Qualidade , População Branca/genética , Indígena Americano ou Nativo do Alasca/genética
7.
J Appl Genet ; 62(4): 585-600, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34386968

RESUMO

Brazil is among the largest producers and consumers of common bean (Phaseolus vulgaris L.) and can be considered a secondary center of diversity for the species. The aim of this study was to estimate the genetic diversity, population structure, and relationships among 288 common bean accessions in an American Diversity Panel (ADP) genotyped with 4,042 high-quality single nucleotide polymorphisms (SNPs). The results showed inter-gene pool hybridization (hybrids) between the two main gene pools (i.e., Mesoamerican and Andean), based on principal component analysis (PCA), discriminant analysis of principal components (DAPC), and STRUCTURE analysis. The genetic diversity parameters showed that the Mesoamerican group has higher values of diversity and allelic richness in comparison with the Andean group. Considering the optimal clusters (K), clustering was performed according to the type of grain (i.e., market group), the institution of origin, the period of release, and agronomic traits. A new subset was selected and named the Mesoamerican Diversity Panel (MDP), with 205 Mesoamerican accessions. Analysis of molecular variance (AMOVA) showed low genetic variance between the two panels (i.e., ADP and MDP) with the highest percentage of the limited variance among accessions in each group. The ADP showed occurrence of high genetic differentiation between populations (i.e., Mesoamerican and Andean) and introgression between gene pools in hybrids based on a set of diagnostic SNPs. The MDP showed better linkage disequilibrium (LD) decay. The availability of genetic variation from inter-gene pool hybridizations presents a potential opportunity for breeders towards the development of superior common bean cultivars.


Assuntos
Pool Gênico , Phaseolus , Variação Genética , Genótipo , Repetições de Microssatélites , Phaseolus/genética
8.
Sci Rep ; 11(1): 14157, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34239025

RESUMO

This study aimed to investigate the relationship between genetic ancestry inferred from autosomal and Y chromosome markers and HLA genotypes in patients with Type 1 Diabetes from an admixed Brazilian population. Inference of autosomal ancestry; HLA-DRB1, -DQA1 and -DQB1 typifications; and Y chromosome analysis were performed. European autosomal ancestry was about 50%, followed by approximately 25% of African and Native American. The European Y chromosome was predominant. The HLA-DRB1*03 and DRB1*04 alleles presented risk association with T1D. When the Y chromosome was European, DRB1*03 and DRB1*04 homozygote and DRB1*03/DRB1*04 heterozygote genotypes were the most frequent. The results suggest that individuals from Maranhão have a European origin as their major component; and are patrilineal with greater frequency from the R1b haplogroup. The predominance of the HLA-DRB1*03 and DRB1*04 alleles conferring greater risk in our population and being more frequently related to the ancestry of the European Y chromosome suggests that in our population, the risk of T1D can be transmitted by European ancestors of our process miscegenation. However, the Y sample sizes of Africans and Native Americans were small, and further research should be conducted with large mixed sample sizes to clarify this possible association.


Assuntos
Cromossomos Humanos Y/genética , Diabetes Mellitus Tipo 1/genética , Pool Gênico , Predisposição Genética para Doença , Antígenos HLA/genética , Filogenia , Adulto , Brasil , Estudos de Casos e Controles , Feminino , Marcadores Genéticos , Geografia , Haplótipos/genética , Humanos , Masculino , Análise de Componente Principal
9.
BMC Genomics ; 22(1): 265, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33849459

RESUMO

BACKGROUND: Bacterial plant pathogens of the Pectobacterium genus are responsible for a wide spectrum of diseases in plants, including important crops such as potato, tomato, lettuce, and banana. Investigation of the genetic diversity underlying virulence and host specificity can be performed at genome level by using a comprehensive comparative approach called pangenomics. A pangenomic approach, using newly developed functionalities in PanTools, was applied to analyze the complex phylogeny of the Pectobacterium genus. We specifically used the pangenome to investigate genetic differences between virulent and avirulent strains of P. brasiliense, a potato blackleg causing species dominantly present in Western Europe. RESULTS: Here we generated a multilevel pangenome for Pectobacterium, comprising 197 strains across 19 species, including type strains, with a focus on P. brasiliense. The extensive phylogenetic analysis of the Pectobacterium genus showed robust distinct clades, with most detail provided by 452,388 parsimony-informative single-nucleotide polymorphisms identified in single-copy orthologs. The average Pectobacterium genome consists of 47% core genes, 1% unique genes, and 52% accessory genes. Using the pangenome, we zoomed in on differences between virulent and avirulent P. brasiliense strains and identified 86 genes associated to virulent strains. We found that the organization of genes is highly structured and linked with gene conservation, function, and transcriptional orientation. CONCLUSION: The pangenome analysis demonstrates that evolution in Pectobacteria is a highly dynamic process, including gene acquisitions partly in clusters, genome rearrangements, and loss of genes. Pectobacterium species are typically not characterized by a set of species-specific genes, but instead present themselves using new gene combinations from the shared gene pool. A multilevel pangenomic approach, fusing DNA, protein, biological function, taxonomic group, and phenotypes, facilitates studies in a flexible taxonomic context.


Assuntos
Pectobacterium , Solanum tuberosum , Europa (Continente) , Pool Gênico , Pectobacterium/genética , Filogenia , Doenças das Plantas , Solanum tuberosum/genética
10.
Ann Bot ; 128(1): 115-125, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33693521

RESUMO

BACKGROUND AND AIMS: The number of plastome sequences has increased exponentially during the last decade. However, there is still little knowledge of the levels and distribution of intraspecific variation. The aims of this study were to estimate plastome diversity within Zea mays and analyse the distribution of haplotypes in connection with the landrace groups previously delimited for South American maize based on nuclear markers. METHODS: We obtained the complete plastomes of 30 South American maize landraces and three teosintes by means of next-generation sequencing (NGS) and used them in combination with data from public repositories. After quality filtering, the curated data were employed to search for single-nucleotide polymorphisms, indels and chloroplast simple sequence repeats. Exact permutational contingency tests were performed to assess associations between plastome and nuclear variation. Network and Bayesian phylogenetic analyses were used to infer evolutionary relationships among haplotypes. KEY RESULTS: Our analyses identified a total of 124 polymorphic plastome loci, with the intergenic regions psbE-rps18, petN-rpoB, trnL_UAG-ndhF and rpoC2-atpI exhibiting the highest marker densities. Although restricted in number, these markers allowed the discrimination of 27 haplotypes in a total of 51 Zea mays individuals. Andean and lowland South American landraces differed significantly in haplotype distribution. However, overall differentiation patterns were not informative with respect to subspecies diversification, as evidenced by the scattered distribution of maize and teosinte plastomes in both the network and Bayesian phylogenetic reconstructions. CONCLUSIONS: Knowledge of intraspecific plastome variation provides the framework for a more comprehensive understanding of evolutionary processes at low taxonomic levels and may become increasingly important for future plant barcoding efforts. Whole-plastome sequencing provided useful variability to contribute to maize phylogeographic studies. The structuring of haplotype diversity in the maize landraces examined here clearly reflects the distinction between the Andean and South American lowland gene pools previously inferred based on nuclear markers.


Assuntos
Pool Gênico , Zea mays , Teorema de Bayes , Cloroplastos , Variação Genética , Genômica , Filogenia , Filogeografia , América do Sul , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA