Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(10): e0223217, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31600239

RESUMO

The adaptation of crops to acid soils is needed for the maintenance of food security in a sustainable way, as decreasing fertilizers use and mechanical interventions in the soil would favor the reduction of agricultural practices' environmental impact. Phosphate deficiency and the presence of reactive aluminum affect vital processes to the plant in this soil, mostly water and nutrient absorption. From this, the understanding of the molecular response to these stresses can foster strategies for genetic improvement, so the aim was to broadly analyze the transcriptional variations in Poupulus spp. in response to these abiotic stresses, as a plant model for woody crops. A co-expression network was constructed among 3,180 genes differentially expressed in aluminum-stressed plants with 34,988 connections. Of this total, 344 genes presented two-fold transcriptional variation and the group of genes associated with those regulated after 246 hours of stress had higher number of connections per gene, with some already characterized genes related to this stress as main hubs. Another co-expression network was made up of 8,380 connections between 550 genes regulated by aluminum stress and phosphate deficiency, in which 380 genes had similar profile in both stresses and only eight with transcriptional variation higher than 20%. All the transcriptomic data are presented here with functional enrichment and homology comparisons with already characterized genes in another species that are related to the explored stresses, in order to provide a broad analysis of the co-opted responses for both the stresses as well as some specificity. This approach improves our understanding regarding the plants adaptation to acid soils and may contribute to strategies of crop genetic improvement for this condition that is widely present in regions of high agricultural activity.


Assuntos
Alumínio/toxicidade , Fosfatos/metabolismo , Populus/genética , Estresse Fisiológico/genética , Adaptação Fisiológica/genética , Produtos Agrícolas , Fertilizantes/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Populus/efeitos dos fármacos , Populus/metabolismo , Solo/química , Inanição/genética , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
2.
Braz J Microbiol ; 50(3): 603-612, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30982213

RESUMO

Herein, the class II hydrophobin gene HFBII-4 was cloned from the biocontrol agent Trichoderma asperellum ACCC30536 and recombinant rHFBII-4 was expressed in Pichia pastoris GS115. Treatment of Populus davidiana × P. alba var. pyramidalis (PdPap poplar) with rHFBII-4 altered the expression levels of genes in the auxin, salicylic acid (SA), and jasmonic acid (JA) signal transduction pathways. Polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL) enzyme activities were induced with rHFBII-4. Evans Blue and nitro blue tetrazolium (NBT) staining indicated that cell membrane permeability and reactive oxygen species were lower in the leaves of plants treated with rHFBII-4. The chlorophyll content was higher than that of control at 2-5 days after treatment. Furthermore, poplar seedlings were inoculated with Alternaria alternata, disease symptoms were observed. The diseased area was smaller in leaves induced with rHFBII-4 compared with control. In summary, rHFBII-4 enhances resistance to A. alternata.


Assuntos
Proteínas Fúngicas/farmacologia , Doenças das Plantas/microbiologia , Populus/efeitos dos fármacos , Populus/imunologia , Trichoderma/metabolismo , Alternaria/fisiologia , Ciclopentanos/imunologia , Resistência à Doença , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Oxilipinas/imunologia , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/imunologia , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Populus/microbiologia , Trichoderma/química , Trichoderma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA