Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125701

RESUMO

Anethole is a terpenoid with antioxidant, anti-inflammatory, and neuronal blockade effects, and the present work was undertaken to study the neuroprotective activity of anethole against diabetes mellitus (DM)-induced neuropathy. Streptozotocin-induced DM rats were used to investigate the effects of anethole treatment on morphological, electrophysiological, and biochemical alterations of the sciatic nerve (SN). Anethole partially prevented the mechanical hyposensitivity caused by DM and fully prevented the DM-induced decrease in the cross-sectional area of the SN. In relation to electrophysiological properties of SN fibers, DM reduced the frequency of occurrence of the 3rd component of the compound action potential (CAP) by 15%. It also significantly reduced the conduction velocity of the 1st and 2nd CAP components from 104.6 ± 3.47 and 39.8 ± 1.02 to 89.9 ± 3.03 and 35.4 ± 1.56 m/s, respectively, and increased the duration of the 2nd CAP component from 0.66 ± 0.04 to 0.82 ± 0.09 ms. DM also increases oxidative stress in the SN, altering values related to thiol, TBARS, SOD, and CAT activities. Anethole was capable of fully preventing all these DM electrophysiological and biochemical alterations in the nerve. Thus, the magnitude of the DM-induced neural effects seen in this work, and the prevention afforded by anethole treatment, place this compound in a very favorable position as a potential therapeutic agent for treating diabetic peripheral neuropathy.


Assuntos
Derivados de Alilbenzenos , Anisóis , Diabetes Mellitus Experimental , Estresse Oxidativo , Nervo Isquiático , Animais , Derivados de Alilbenzenos/farmacologia , Nervo Isquiático/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Ratos , Anisóis/farmacologia , Anisóis/uso terapêutico , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/prevenção & controle , Neuropatias Diabéticas/metabolismo , Potenciais de Ação/efeitos dos fármacos , Antioxidantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
2.
Cardiovasc Diabetol ; 23(1): 221, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926835

RESUMO

BACKGROUND: The incidence of myocardial infarction (MI) and sudden cardiac death (SCD) is significantly higher in individuals with Type 2 Diabetes Mellitus (T2DM) than in the general population. Strategies for the prevention of fatal arrhythmias are often insufficient, highlighting the need for additional non-invasive diagnostic tools. The T-wave heterogeneity (TWH) index measures variations in ventricular repolarization and has emerged as a promising predictor for severe ventricular arrhythmias. Although the EMPA-REG trial reported reduced cardiovascular mortality with empagliflozin, the underlying mechanisms remain unclear. This study investigates the potential of empagliflozin in mitigating cardiac electrical instability in patients with T2DM and coronary heart disease (CHD) by examining changes in TWH. METHODS: Participants were adult outpatients with T2DM and CHD who exhibited TWH > 80 µV at baseline. They received a 25 mg daily dose of empagliflozin and were evaluated clinically including electrocardiogram (ECG) measurements at baseline and after 4 weeks. TWH was computed from leads V4, V5, and V6 using a validated technique. The primary study outcome was a significant (p < 0.05) change in TWH following empagliflozin administration. RESULTS: An initial review of 6,000 medical records pinpointed 800 patients for TWH evaluation. Of these, 412 exhibited TWH above 80 µV, with 97 completing clinical assessments and 90 meeting the criteria for high cardiovascular risk enrollment. Empagliflozin adherence exceeded 80%, resulting in notable reductions in blood pressure without affecting heart rate. Side effects were generally mild, with 13.3% experiencing Level 1 hypoglycemia, alongside infrequent urinary and genital infections. The treatment consistently reduced mean TWH from 116 to 103 µV (p = 0.01). CONCLUSIONS: The EMPATHY-HEART trial preliminarily suggests that empagliflozin decreases heterogeneity in ventricular repolarization among patients with T2DM and CHD. This reduction in TWH may provide insight into the mechanism behind the decreased cardiovascular mortality observed in previous trials, potentially offering a therapeutic pathway to mitigate the risk of severe arrhythmias in this population. TRIAL REGISTRATION: NCT: 04117763.


Assuntos
Compostos Benzidrílicos , Diabetes Mellitus Tipo 2 , Glucosídeos , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Compostos Benzidrílicos/uso terapêutico , Compostos Benzidrílicos/efeitos adversos , Glucosídeos/uso terapêutico , Glucosídeos/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Idoso , Diabetes Mellitus Tipo 2/mortalidade , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/fisiopatologia , Resultado do Tratamento , Fatores de Tempo , Potenciais de Ação/efeitos dos fármacos , Arritmias Cardíacas/mortalidade , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Doença das Coronárias/mortalidade , Doença das Coronárias/fisiopatologia , Doença das Coronárias/tratamento farmacológico , Doença das Coronárias/diagnóstico , Eletrocardiografia , Fatores de Risco
3.
Pharmacol Rep ; 76(3): 585-599, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38619735

RESUMO

BACKGROUND: Amiodarone (AMIO) is an antiarrhythmic drug with the pKa in the physiological range. Here, we explored how mild extracellular pH (pHe) changes shape the interaction of AMIO with atrial tissue and impact its pharmacological properties in the classical model of sea anemone sodium channel neurotoxin type 2 (ATX) induced late sodium current (INa-Late) and arrhythmias. METHOD: Isolated atrial cardiomyocytes from male Wistar rats and human embryonic kidney cells expressing SCN5A Na+ channels were used for patch-clamp experiments. Isolated right atria (RA) and left atria (LA) tissue were used for bath organ experiments. RESULTS: A more acidophilic pHe caused negative inotropic effects on isolated RA and LA atrial tissue, without modification of the pharmacological properties of AMIO. A pHe of 7.0 changed the sodium current (INa) related components of the action potential (AP), which was enhanced in the presence of AMIO. ATXinduced arrhythmias in isolated RA and LA. Also, ATX prolonged the AP duration and enhanced repolarization dispersion in isolated cardiomyocytes in both pHe 7.4 and pHe 7.0. Pre-incubation of the isolated RA and LA and isolated atrial cardiomyocytes with AMIO prevented arrhythmias induced by ATX only at a pHe of 7.0. Moreover, AMIO was able to block INa-Late induced by ATX only at a pHe of 7.0. CONCLUSION: The pharmacological properties of AMIO concerning healthy rat atrial tissue are not dependent on pHe. However, the prevention of arrhythmias induced by INa-Late is pHe-dependent. The development of drugs analogous to AMIO with charge stabilization may help to create more effective drugs to treat arrhythmias related to the INa-Late.


Assuntos
Potenciais de Ação , Amiodarona , Antiarrítmicos , Arritmias Cardíacas , Átrios do Coração , Miócitos Cardíacos , Ratos Wistar , Animais , Amiodarona/farmacologia , Antiarrítmicos/farmacologia , Masculino , Humanos , Ratos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Potenciais de Ação/efeitos dos fármacos , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/metabolismo , Concentração de Íons de Hidrogênio , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/induzido quimicamente , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Células HEK293 , Sódio/metabolismo , Técnicas de Patch-Clamp , Venenos de Cnidários/farmacologia
4.
Toxicol Lett ; 359: 96-105, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35202779

RESUMO

Tebuconazole (TEB) is an important fungicide that belongs to the triazole family. It is widely used in agriculture and its use has experienced a tremendous increase in the last decade. The long-term exposure of humans to this pesticide is a real threat because it is stable in water and soil. The association between long-term exposure to TEB and damage of several biological systems, including hepatotoxicity and cardiotoxicity is evident, however, acute toxicological studies to reveal the toxicity of TEB are limited. This research paper addressed the acute exposure of TEB in murine hearts, cardiomyocytes, and human cardiomyocytes derived from an induced pluripotent stem cell (hiPSC-CMs), spelling out TEB's impact on electromechanical properties of the cardiac tissue. In ex vivo experiments, TEB dose dependently, caused significant electrocardiogram (ECG) remodeling with prolonged PR and QTc interval duration. The TEB was also able to change the action potential waveform in murine cardiomyocytes and hiPSC-CMs. These effects were associated with the ability of the compound to block the L-type calcium current (IC50 = 33.2 ± 7.4 µmol.l-1) and total outward potassium current (IC50 = 5.7 ± 1.5 µmol.l-1). TEB also increased the sodium/calcium exchanger current in its forward and reverse modes. Additionally, sarcomere shortening and calcium transient in isolated cardiomyocytes were enhanced when cells were exposed to TEB at 30 µmol.l-1. Combined, our results demonstrated that acute TEB exposure affects the cardiomyocyte's electro-contractile properties and triggers the appearance of ECG abnormalities.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Arritmias Cardíacas/induzido quimicamente , Cardiotoxicidade/etiologia , Fungicidas Industriais/toxicidade , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Triazóis/toxicidade , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL
5.
Artigo em Inglês | MEDLINE | ID: mdl-34454991

RESUMO

The hyperpolarization-activated cation current (Ih) is a determinant of intrinsic excitability in various cells, including dopaminergic neurons (DA) of the ventral tegmental area (VTA). In contrast to other cellular conductances, Ih is activated by hyperpolarization negative to -55 mV and activating Ih produces a time-dependent depolarizing current. Our laboratory demonstrated that cocaine sensitization, a chronic cocaine behavioral model, significantly reduces Ih amplitude in VTA DA neurons. Despite this reduction in Ih, the spontaneous firing of VTA DA cells after cocaine sensitization remained similar to control groups. Although the role of Ih in controlling VTA DA excitability is still poorly understood, our hypothesis is that Ih reduction could play a role of a homeostatic controller compensating for cocaine-induced change in excitability. Using in vivo single-unit extracellular electrophysiology in isoflurane anesthetized rats, we explored the contribution of Ih on spontaneous firing patterns of VTA DA neurons. A key feature of spontaneous excitability is bursting activity; bursting is defined as trains of two or more spikes occurring within a short interval and followed by a prolonged period of inactivity. Burst activity increases the reliability of information transfer. To elucidate the contribution of Ih to spontaneous firing patterns of VTA DA neurons, we locally infused an Ih blocker (ZD 7288, 8.3 µM) and evaluated its effect. Ih blockade significantly reduced firing rate, bursting frequency, and percent of spikes within a burst. In addition, Ih blockade significantly reduced acute cocaine-induced spontaneous firing rate, bursting frequency, and percent of spikes within a burst. Using whole-cell patch-clamp, we determine the progressive reduction of Ih after acute and chronic cocaine administration (15 mg/k.g intraperitoneally). Our data show a significant reduction (~25%) in Ih amplitude after 24 but not 2 h of acute cocaine administration. These results suggest that a progressive reduction of Ih could serve as a homeostatic regulator of cocaine-induced spontaneous firing patterns related to VTA DA excitability.


Assuntos
Cocaína/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Área Tegmentar Ventral/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Eletrofisiologia , Masculino , Ratos
6.
Biomed Pharmacother ; 144: 112307, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34653762

RESUMO

Combination therapy between paclitaxel (PTX) and doxorubicin (DXR) is applied as the first-line treatment of breast cancer. Co-administration of drugs at synergistic ratio for treatment is facilitated with the use of nanocarriers, such as liposomes. However, despite the high response rate of solid tumors to this combination, a synergism of cardiotoxicity may limit the use. Thus, the objective of this work was to investigate the toxicity of long-circulating and fusogenic liposomes co-encapsulating PTX and DXR at the synergistic molar ratio (1:10) (LCFL-PTX/DXR). For this, clinical chemistry, histopathological analysis and electrocardiographic exams were performed on female Balb/c mice that received a single intravenous dose of LCFL-PTX/DXR. The results of the study indicated that the LD50 dose range (lethal dose for 50% of animals) of the LCFL-PTX/DXR treatment (28.9-34.7 mg/kg) is much higher than that found for free PTX/DXR treatment (20.8-23.1 mg/kg). In addition, liposomes promoted cardiac protection by not raising CK-MB levels in animals, keeping cardiomyocytes without injury or electrocardiographic changes. After 14 days of treatment, free PTX/DXR caused prolongation of the QRS interval when compared to LCFL-PTX/DXR treatment at the same dose (37.0 ± 5.01 ms and 30.83 ± 2.62 ms, respectively, with p = 0.017). The survival rate of animals treated with LCFL-PTX/DXR was three times higher than that of those treated with free drugs. Thus, it was established that the toxicity of LCFL-PTX/DXR is reduced compared to the combination of free PTX/DXR and this platform has advantages for the clinical treatment of breast cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/toxicidade , Doxorrubicina/toxicidade , Cardiopatias/induzido quimicamente , Lipídeos/química , Miócitos Cardíacos/efeitos dos fármacos , Paclitaxel/toxicidade , Potenciais de Ação/efeitos dos fármacos , Administração Intravenosa , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/química , Cardiotoxicidade , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Composição de Medicamentos , Sinergismo Farmacológico , Eletrocardiografia , Feminino , Cardiopatias/metabolismo , Cardiopatias/patologia , Dose Letal Mediana , Lipossomos , Camundongos Endogâmicos BALB C , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Paclitaxel/administração & dosagem , Paclitaxel/química
7.
Sci Rep ; 11(1): 13882, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230550

RESUMO

Serotonin (5-HT) is a key neuromodulator of medial prefrontal cortex (mPFC) functions. Pharmacological manipulation of systemic 5-HT bioavailability alters the electrical activity of mPFC neurons. However, 5-HT modulation at the population level is not well characterized. In the present study, we made single neuron extracellular recordings in the mPFC of rats performing an operant conditioning task, and analyzed the effect of systemic administration of fluoxetine (a selective serotonin reuptake inhibitor) on the information encoded in the firing activity of the neural population. Chronic (longer than 15 days), but not acute (less than 15 days), fluoxetine administration reduced the firing rate of mPFC neurons. Moreover, fluoxetine treatment enhanced pairwise entropy but diminished noise correlation and redundancy in the information encoded, thus showing how mPFC differentially encodes information as a function of 5-HT bioavailability. Information about the occurrence of the reward-predictive stimulus was maximized during reward consumption, around 3 to 4 s after the presentation of the cue, and it was higher under chronic fluoxetine treatment. However, the encoded information was less robust to noise corruption when compared to control conditions.


Assuntos
Sinais (Psicologia) , Córtex Pré-Frontal/fisiologia , Recompensa , Serotonina/metabolismo , Análise e Desempenho de Tarefas , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Disponibilidade Biológica , Condicionamento Operante , Entropia , Fluoxetina/farmacologia , Masculino , Ratos Long-Evans
8.
Eur J Pharmacol ; 906: 174194, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34044012

RESUMO

Myocardial infarction (MI) is the irreversible injury of the myocardium caused by prolonged myocardial ischemia and is a major cause of heart failure and eventual death among ischemic patients. The present study assessed the protective potentials of andrographolide against isoproterenol-induced myocardial infarction in rats. Animals were randomly divided into four groups: Control (Ctr) group received 0.9% saline solution once daily for 21 days, Isoproterenol (Iso) group received 0.9% saline solution once daily for 19 days followed by 80 mg/kg/day of isoproterenol hydrochloride solution on day 20 and 21, Andrographolide (Andro) group received 20 mg/kg/day of andrographolide for 21 days, and Andrographolide plus Isoproterenol (Andro + Iso) group received 20 mg/kg/day of andrographolide for 21 days with co-administration of 80 mg/kg/day of isoproterenol hydrochloride solution on day 20 and 21. After all treatments, cardiac-specific parameters that define cardiac health and early subacute MI were measured in all groups using both biophysical and pharmacological assay methods. Isoproterenol administration significantly (P < 0.05) increased cardiac mass indexes, systemic cardiac biomarkers, infarct size and caused cardiac histological alterations; significantly (P < 0.05) increased heart rate, QRS & QTc intervals and caused ST-segment elevation; significantly (P < 0.05) increased myocytes shortening, action potential duration (APD), L-type Ca2+ current (ICa,L) density and significantly (P < 0.05) decreased transient outward K+ current (Ito) density typical of the early subacute MI. Interestingly, pretreatment with andrographolide prevented and or minimized these anomalies, notably, by reducing ICa,L density and increasing Ito density significantly. Therefore, andrographolide could be seen as a promising therapeutic agent capable of making the heart resistant to early subacute infarction and it could be used as template for the development of semisynthetic drug(s) for cardiac protection against MI.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Cardiotônicos/farmacologia , Diterpenos/farmacologia , Infarto do Miocárdio/prevenção & controle , Canais de Potássio/agonistas , Potenciais de Ação/efeitos dos fármacos , Animais , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio Tipo L/metabolismo , Cardiotônicos/uso terapêutico , Modelos Animais de Doenças , Diterpenos/uso terapêutico , Eletrocardiografia/efeitos dos fármacos , Humanos , Isoproterenol/administração & dosagem , Isoproterenol/toxicidade , Masculino , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/diagnóstico , Canais de Potássio/metabolismo , Ratos
9.
Psychopharmacology (Berl) ; 238(3): 787-810, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33241481

RESUMO

RATIONALE: The abuse of psychostimulants has adverse consequences on the physiology of the central nervous system. In Argentina, and other South American countries, coca paste or "PACO" (cocaine and caffeine are its major components) is massively consumed with deleterious clinical consequences for the health and well-being of the general population. A scant number of studies have addressed the consequences of stimulant combination of cocaine and caffeine on the physiology of the somatosensory thalamocortical (ThCo) system. OBJECTIVES: Our aim was to study ion conductances that have important implications regulating sleep-wake states 24-h after an acute or chronic binge-like administration of a cocaine and caffeine mixture following previously analyzed pasta base samples ("PACO"-like binge") using mice. METHODS: We randomly injected (i.p.) male C57BL/6JFcen mice with a binge-like psychostimulants regimen during either 1 day (acute) or 1 day on/1 day off during 13 days for a total of 7 binges (chronic). Single-cell patch-clamp recordings of VB neurons were performed in thalamocortical slices 24 h after the last psychostimulant injection. We also recorded EEG/EMG from mice 24 h after being systemically treated with chronic administration of cocaine + caffeine versus saline, vehicle. RESULTS: Our results showed notorious changes in the intrinsic properties of the VB nucleus neurons that persist after 24-h of either acute or chronic binge administrations of combined cocaine and caffeine ("PACO"-like binge). Functional dysregulation of HCN (hyperpolarization-activated cyclic nucleotide-gated) and T-type VGC (voltage-gated calcium) channels was described 24-h after acute/chronic "PACO"-like administrations. Furthermore, intracellular basal [Ca2+] disturbances resulted a key factor that modulated the availability and the activation of T-type channels, altering T-type "window currents." As a result, all these changes ultimately shaped the low-threshold spikes (LTS)-associated Ca2+ transients, regulated the membrane excitability, and altered sleep-wake transitions. CONCLUSION: Our results suggest that deleterious consequences of stimulants cocaine and caffeine combination on the thalamocortical physiology as a whole might be related to potential neurotoxic effects of soaring intracellular [Ca2+].


Assuntos
Cafeína/efeitos adversos , Canais de Cálcio Tipo T/metabolismo , Estimulantes do Sistema Nervoso Central/efeitos adversos , Cocaína/efeitos adversos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Neurônios/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Cafeína/administração & dosagem , Estimulantes do Sistema Nervoso Central/administração & dosagem , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Cocaína/administração & dosagem , Sinergismo Farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Distribuição Aleatória , Transtornos da Transição Sono-Vigília/induzido quimicamente , América do Sul , Tálamo/efeitos dos fármacos , Tálamo/metabolismo
10.
Brain Res Bull ; 164: 289-298, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32910991

RESUMO

Previous studies showed that mecamylamine a noncompetitive and nonspecific blocker of nicotinic acetylcholine receptors (nAChRs), stimulates the activity of the dorsal raphe nucleus (DRN) serotonergic neurons and DRN serotonin (5-HT) release. In the present study, the mechanisms involved in these mecamylamine-induced effects were examined using electrophysiology and calcium-imaging studies, both performed in Wistar rat midbrain slices. Mecamylamine (0.5-9 µM), bath administered, increased the firing frequency of identified 5-HT DRN neurons by a maximum of 5% at 3 µM. This effect was accompanied by a 112 % increase in the frequency of spontaneous excitatory postsynaptic currents of 5-HT DRN neurons. It was blocked by the AMPA/kainate receptor blocker CNQX (10 µM) and by the specific α4ß2 nAChRs blocker dihydro-ß-erythroidine (100 nM) but was not affected by tetrodotoxin (TTX, 500 nM). Simultaneously, mecamylamine produced a 58 % decrease in the frequency of GABAergic spontaneous inhibitory postsynaptic currents, an effect that was not influenced by TTX. Calcium-imaging studies support the results obtained with the electrophysiological studies by showing that mecamylamine (3 µM) increases the activity of a cell population located in the midline of the DRN, which was sensitive to the inhibitory effects of 8-OH-DPAT, an agonist at 5-HT1A receptors. It is assumed that mecamylamine, in low concentrations, acts as an agonist of α4ß2 nAChRs present on the glutamatergic DRN terminals, thus increasing intra-raphe glutamate release. This stimulatory effect is reinforced by the decrease in DRN GABA release, which is dependent on the mecamylamine-induced blockade of α7 nAChRs located on DRN GABAergic terminals. We hypothesize that at least a part of mecamylamine antidepressant effects described in animal models of depression are mediated by an increase in DRN 5-HT release.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Núcleo Dorsal da Rafe/efeitos dos fármacos , Bloqueadores Ganglionares/farmacologia , Mecamilamina/farmacologia , Neurônios Serotoninérgicos/efeitos dos fármacos , Animais , Cálcio/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Neurônios Serotoninérgicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA