Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Immunohorizons ; 8(2): 136-146, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334757

RESUMO

hnRNP A1 is an important RNA-binding protein that influences many stages of RNA processing, including transcription, alternative splicing, mRNA nuclear export, and RNA stability. However, the role of hnRNP A1 in immune cells, specifically CD4+ T cells, remains unclear. We previously showed that Akt phosphorylation of hnRNP A1 was dependent on TCR signal strength and was associated with Treg differentiation. To explore the impact of hnRNP A1 phosphorylation by Akt on CD4+ T cell differentiation, our laboratory generated a mutant mouse model, hnRNP A1-S199A (A1-MUT) in which the major Akt phosphorylation site on hnRNP A1 was mutated to alanine using CRISPR Cas9 technology. Immune profiling of A1-MUT mice revealed changes in the numbers of Tregs in the mesenteric lymph node. We found no significant differences in naive CD4+ T cell differentiation into Th1, Th2, Th17, or T regulatory cells (Tregs) in vitro. In vivo, Treg differentiation assays using OTII-A1-Mut CD4+ T cells exposed to OVA food revealed migration and homing defects in the A1-MUT but no change in Treg induction. A1-MUT mice were immunized with NP- keyhole limpet hemocyanin, and normal germinal center development, normal numbers of NP-specific B cells, and no change in Tfh numbers were observed. In conclusion, Akt phosphorylation of hnRNP A1 S199 does not play a role in CD4+ T cell fate or function in the models tested. This hnRNP A1-S199A mouse model should be a valuable tool to study the role of Akt phosphorylation of hnRNP A1-S199 in different cell types or other mouse models of human disease.


Assuntos
Diferenciação Celular , Ribonucleoproteína Nuclear Heterogênea A1 , Linfócitos T , Animais , Camundongos , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Serina/metabolismo , Transdução de Sinais , Linfócitos T/citologia
2.
BMC Res Notes ; 16(1): 309, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37919788

RESUMO

AKT/PKB is a kinase crucial for pluripotency maintenance in pluripotent stem cells. Multiple post-translational modifications modulate its activity. We have previously demonstrated that AKT1 induces the expression of the pluripotency transcription factor Nanog in a SUMOylation-dependent manner in mouse embryonic stem cells. Here, we studied different cellular contexts and main candidates that could mediate this induction. Our results strongly suggest the pluripotency transcription factors OCT4 and SOX2 are not essential mediators. Additionally, we concluded that this induction takes place in different pluripotent contexts but not in terminally differentiated cells. Finally, the cross-matching analysis of ESCs, iPSCs and MEFs transcriptomes and AKT1 phosphorylation targets provided new clues about possible factors that could be involved in the SUMOylation-dependent Nanog induction by AKT.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Sumoilação , Animais , Camundongos , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diferenciação Celular/genética , Fatores de Transcrição/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Proteínas de Homeodomínio/genética
3.
Rev Soc Bras Med Trop ; 56: e01042023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37493735

RESUMO

BACKGROUND: Autophagy can inhibit the survival of intracellular microorganisms including Mycobacterium tuberculosis (Mtb), and the PI3K/AKT/mTOR pathway plays a crucial role. This study investigated the association between PI3K/AKT/mTOR pathway autophagy-related gene polymorphisms and pulmonary tuberculosis (PTB) susceptibility. METHODS: KEGG pathway and gene ontology (GO) databases were searched for genes belonging to the PI3K/AKT/mTOR and autophagy pathways. Thirty SNPs in nine genes were identified and tested for their associations with tuberculosis in 130 patients with PTB and 271 controls. We constructed genetic risk scores (GRSs) and divided the participants into 3 subgroups based on their GRSs:0-5, 6-10, and 11-16. RESULTS: This analysis revealed that the AKT1 (rs12432802), RPTOR (rs11654508, rs12602885, rs2090204, rs2589144, and rs2672897), and TSC2 (rs2074969) polymorphisms were significantly associated with PTB risk. A decreasing trend was observed (P trend 0.020), in which a lower GRS was associated with a higher risk of PTB ([6-10] vs. [0-5]: OR (95%CI) 0.590 (0.374-0.931); [11-16] vs. [0-5]: OR (95%CI) 0.381 (0.160-0.906)). CONCLUSIONS: Polymorphisms in AKT1, RPTOR, and TSC2 may influence susceptibility to PTB.


Assuntos
Autofagia , Proteínas Proto-Oncogênicas c-akt , Tuberculose Pulmonar , Humanos , Autofagia/genética , Estudos de Casos e Controles , População do Leste Asiático , Predisposição Genética para Doença/genética , Fosfatidilinositol 3-Quinases/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas c-akt/genética , Serina-Treonina Quinases TOR/genética , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/epidemiologia
4.
J Struct Biol ; 215(2): 107961, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37059313

RESUMO

AKT/PKB is a kinase involved in the regulation of a plethora of cell processes. Particularly, in embryonic stem cells (ESCs), AKT is crucial for the maintenance of pluripotency. Although the activation of this kinase relies on its recruitment to the cellular membrane and subsequent phosphorylation, multiple other post-translational modifications (PTMs), including SUMOylation, fine-tune its activity and target specificity. Since this PTM can also modify the localization and availability of different proteins, in this work we explored if SUMOylation impacts on the subcellular compartmentalization and distribution of AKT1 in ESCs. We found that this PTM does not affect AKT1 membrane recruitment, but it modifies the AKT1 nucleus/cytoplasm distribution, increasing its nuclear presence. Additionally, within this compartment, we found that AKT1 SUMOylation also impacts on the chromatin-binding dynamics of NANOG, a central pluripotency transcription factor. Remarkably, the oncogenic E17K AKT1 mutant produces major changes in all these parameters increasing the binding of NANOG to its targets, also in a SUMOylation dependent manner. These findings demonstrate that SUMOylation modulates AKT1 subcellular distribution, thus adding an extra layer of regulation of its function, possibly by affecting the specificity and interaction with its downstream targets.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Sumoilação , Mutação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sumoilação/genética , Cromatina/genética , Células-Tronco Embrionárias/metabolismo
5.
J Oral Pathol Med ; 52(2): 119-126, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36565263

RESUMO

BACKGROUND: Fibroblast growth factor receptor 1 is a potential prognostic factor for tongue squamous cell carcinoma and is associated with oral epithelial dysplasia grade in oral leukoplakia. METHODS: Thirty cases of tongue squamous cell carcinoma and 30 cases of oral leukoplakia were analyzed. Fibroblast growth factor receptor 1 and phosphorylated Akt protein expression were analyzed by immunohistochemistry and quantified using a digital algorithm. Fibroblast growth factor receptor 1 gene amplification was analyzed by fluorescent in situ hybridization in the tongue squamous cell carcinoma cases. RESULTS: Clinical appearance and dysplasia grade were correlated with oral leukoplakia malignant transformation. Oral leukoplakia cases presenting high fibroblast growth factor receptor 1 expression showed a higher risk of malignant transformation (p = 0.016, HR: 7.3, 95% CI: 1.4-37.4). Phosphorylated Akt showed faint to no expression in oral leukoplakia, which did not correlate with dysplasia grade or malignant transformation. High expression of fibroblast growth factor receptor 1 and phosohorylated Akt were associated with poor overall survival and disease-free survival in tongue squamous cell carcinoma, although only fibroblast growth factor receptor 1 expression was significantly associated with poor overall survival (p = 0.024; HR: 4.9, 95% CI: 1.2-19.9). Cases presenting double fibroblast growth factor receptor 1/phosphorylated Akt overexpression (n = 8) showed markedly impaired overall survival (p = 0.020; HR: 6.4, 95% CI: 1.3-31.1) and disease-free survival (p = 0.001, HR: 13.0, 95% CI: 3.0-55.7). Fibroblast growth factor receptor 1 amplification was observed in 16.6% of tongue squamous cell carcinoma cases, being correlated with vascular and neural invasion (p = 0.001 and 0.017, respectively), but not with fibroblast growth factor receptor 1 protein expression, overall survival, or disease-free survival. CONCLUSION: Fibroblast growth factor receptor 1 protein expression is an important prognostic factor in oral leukoplakia and tongue squamous cell carcinoma.


Assuntos
Carcinoma de Células Escamosas , Neoplasias da Língua , Humanos , Carcinoma de Células Escamosas/patologia , Neoplasias da Língua/patologia , Prognóstico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Hibridização in Situ Fluorescente , Proteínas Proto-Oncogênicas c-akt/genética , Leucoplasia Oral/patologia , Língua/patologia
6.
Genes (Basel) ; 13(12)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36553634

RESUMO

This study aimed to establish the importance of ergothioneine (ERT) in the erythroid adaptation mechanisms by appraising the expression levels of redox-related genes associated with the PI3K/AKT/FoxO3 and Nrf2-ARE pathways using K562 cells induced to erythroid differentiation and H2O2-oxidative stress. Cell viability and gene expression were evaluated. Two concentrations of ERT were assessed, 1 nM (C1) and 100 µM (C2), with and without stress induction (100 µM H2O2). Assessments were made in three periods of the cellular differentiation process (D0, D2, and D4). The C1 treatment promoted the induction of FOXO3 (D0 and 2), PSMB5, and 6 expressions (D4); C1 + H2O2 treatment showed the highest levels of NRF2 transcripts, KEAP1 (D0), YWHAQ (D2 and 4), PSMB5 (D2) and PSMB6 (D4); and C2 + H2O2 (D2) an increase in FOXO3 and MST1 expression, with a decrease of YWHAQ and NRF2 was observed. in C2 + H2O2 (D2) an increase in FOXO3 and MST1, with a decrease in YWHAQ and NRF2 was observed All ERT treatments increased gamma-globin expression. Statistical multivariate analyzes highlighted that the Nrf2-ARE pathway presented a greater contribution in the production of PRDX1, SOD1, CAT, and PSBM5 mRNAs, whereas the PI3K/AKT/FoxO3 pathway was associated with the PRDX2 and TRX transcripts. In conclusion, ERT presented a cytoprotective action through Nrf2 and FoxO3, with the latter seeming to contribute to erythroid proliferation/differentiation.


Assuntos
Ergotioneína , Humanos , Ergotioneína/farmacologia , Ergotioneína/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Células K562 , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Oxirredução , Expressão Gênica
7.
J Mammary Gland Biol Neoplasia ; 27(3-4): 241-252, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36323932

RESUMO

Mammary cancer is the main type of neoplasia in female dogs and is considered an adequate model for the biological and therapeutic study of cancer in women. The PIK3CA/AKT/mTOR pathway plays a central role in cellular homeostasis and is often dysregulated in cancer. The increased expression of PI3K protein in the literature is associated with a poor prognosis, and alterations in the PIK3CA gene can lead to changes in downstream pathways. Thus, the objective of this study was to validate the protein expression to confirm the gene expression of proteins belonging to the main pathway PI3K and PTEN, and their downstream pathways through ZEB1, ZEB2, HIF1A, VHL, CASP3 and PARP1 relating to prognosis in canine mammary cancer. For protein studies, the samples came from 58 female dogs with mammary neoplasia, immunohistochemistry was performed and its analysis by the histoscore method. For the genetic evaluation, the samples came from 13 patients, the DNA was extracted and the analysis for quantitative expression. Through immunohistochemistry, PI3K positivity was significantly associated with affected regional lymph node, distant metastasis, patients with HER2+, Triple Negative and Luminal B phenotypes, and the lowest survival rates. Through gene expression, we observed higher gene expression of ZEB2 and PARP1 both among patients who were alive and who died, which was not true for the expressions of PIK3CA and HIF1A. In conclusion, the data observed in this work are promising in the study of new molecular prognostic markers such as PI3K, ZEB2 and PARP1 for canine mammary cancer.


Assuntos
Neoplasias Mamárias Animais , Proteínas Proto-Oncogênicas c-akt , Feminino , Animais , Cães , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Prognóstico , Neoplasias Mamárias Animais/patologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Expressão Gênica
8.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806204

RESUMO

microRNAs negatively regulate gene expression by blocking translation or increasing mRNA degradation. In skeletal muscle, these molecules play important roles in adaptive responses, and ongoing investigations are necessary to understand the fine-tune regulation of skeletal muscle mass. Herein we showed that skeletal muscle overexpression of miR-29c increased fiber size and force at 7 and 30 days after electrotransfer. At both time points, AKT/mTOR pathway components were downregulated, and, surprisingly, overall protein synthesis was strongly elevated at day 7, which normalized by day 30 after pCMVmiR-29c electrotransfer. These results indicate that miR-29c expression induces skeletal muscle hypertrophy and gain of function, which involves increased overall protein synthesis in spite of the deactivation of the AKT/mTOR pathway.


Assuntos
MicroRNAs , Proteínas Proto-Oncogênicas c-akt , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
9.
Women Health ; 62(6): 467-475, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35681140

RESUMO

Breast cancer (BC) has a high mortality rate, which is attributed to the absence of effective treatment markers. Doxorubicin (DOX) was evaluated by molecular docking in vitro in cultured BC spheroids and its association with genes involved in the PI3K/AKT/PTEN signaling pathway. Spheroids were obtained from a primary BC. The selected compound was used for molecular docking experiments. Spheroids were treated with DOX for 1 (D1) and 9 (D9) days. qPCR was used to evaluate PIK3CA, HIF-1α, VEGF-A, PTEN expression. Treatment with DOX (1 µM) significantly increased the number of spheroids (D1), whereas exposure to chemotherapy at 2 µM on D9 was more effective. DOX treatment resulted in significantly higher expression of VEGF-A, HIF-1α and PIK3CA by D1 and HIF-1α and PTEN were upregulated by D9. Compared to treatment on D1 with D9 (1 µM) had significantly higher PTEN and lower PIK3CA gene expression. The genes HIF-1α and PTEN were more expressed with 2 µM of DOX while VEGF-A was downregulated. D1 vs. D9 exhibited reduced VEGF-A, HIF-1α, and PIK3CA expression and upregulation of PTEN expression. DOX effects at the molecular mechanisms can be involved the modulation of genes related to angiogenesis cell proliferation and tumor growth in BC tissue spheroids.


Assuntos
Neoplasias da Mama , Fosfatidilinositol 3-Quinases , Transdução de Sinais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Doxorrubicina/farmacologia , Feminino , Humanos , Simulação de Acoplamento Molecular , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Projetos Piloto , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Esferoides Celulares , Células Tumorais Cultivadas , Fator A de Crescimento do Endotélio Vascular/genética
10.
Food Chem Toxicol ; 165: 113083, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35577173

RESUMO

Hydrogen sulfide (H2S) has been known for its toxicity. However, recent studies have focused on the mechanisms involved in endogenous production and function. To date, the H2S role in insulin signaling and glucose homeostasis is unclear. This uncertainty is even more evident in skeletal muscle, a physiological niche highly relevant for regulating glycemia in response to insulin. This study aimed to investigate the role of H2S on insulin signaling and glucose uptake in the L6 skeletal muscle cell line. We evaluated the endogenous synthesis with the fluorescent dye, 7-azido-4-methyl coumarin (7-AzMC). Glucose restriction-induced an increase in the endogenous levels of H2S, likely through stimulation of cystathionine γ-lyase activity, as its specific inhibitor, PAG (5 mM) prevented this increase, and mRNA levels of CSE decreased with glucose and amino acid restriction. Exogenous H2S reduced insulin-induced glucose uptake at 0.5 up to 24 h, an effect dissociated from the level of Akt phosphorylation. Our results show that glucose restriction induces endogenous production of H2S via CSE. In addition, H2S disrupts insulin-induced glucose uptake independent of the Akt pathway. These results suggest that H2S antagonism over insulin-induced glucose uptake could help maintain the plasmatic glucose levels in conditions that provoke hypoglycemia, which could serve as an H2S-regulated mechanism for maintaining glucose plasmatic levels through the inhibition of the skeletal muscle insulin-depended glucose uptake.


Assuntos
Sulfeto de Hidrogênio , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Glucose/metabolismo , Sulfeto de Hidrogênio/metabolismo , Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA