Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Bioorg Chem ; 102: 104080, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32683182

RESUMO

Diketopiperazines (DKPs) have been regarded as an important scaffold from the viewpoint of synthesis due to their biological properties for the treatment of several diseases, including cancer. In this work, two novel series of enantiomeric 2,6-DKPs derived from α-amino acids were synthesized through nucleophilic substitution and intramolecular cyclization reactions. All the compounds were docked against histone deacetylase 8 (HDAC8), which is a promising target for the development of anticancer drugs. These compounds bound into the active site of HDAC8 in a similar way to Trichostatin A (TSA), which is an HDAC8 inhibitor. This study showed that the conformation of the 2,6-DKP ring, stereochemistry, and the type of substituent on the chiral center had an important role in the binding modes. The Gibbs free energies and dissociation constants values of HDAC8-ligand complexes showed that compounds (S)-4hBn, (S)-4m, (R)-4h, and (R)-4m were more stable and affine towards HDAC8 than TSA. The inhibitory activities of 4a, (S)-4h, (S)- and (R)-4(g, l, m) were evaluated in vitro on HDAC8. It was found that compounds (R)-4g (IC50 = 21.54 nM) and (R)-4m (IC50 = 10.81 nM) exhibited better inhibitory activities than TSA (IC50 = 28.32 nM). These results suggested that 2,6-DKPs derivatives may be promising anticancer agents for further biological studies.


Assuntos
Dicetopiperazinas/antagonistas & inibidores , Histona Desacetilases/efeitos dos fármacos , Simulação de Acoplamento Molecular/métodos , Proteínas Repressoras/efeitos dos fármacos , Desenho de Fármacos , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
2.
Clin Transl Oncol ; 21(12): 1624-1633, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30963468

RESUMO

BACKGROUND: Synovial sarcoma (SS) is an aggressive soft-tissue sarcoma with a poor prognosis owing to its resistance to radiation and chemotherapy. Thus, novel therapeutic strategies for SS are urgently required. Anlotinib, a new oral tyrosine kinase inhibitor, is designed to primarily inhibit multi-targets in vasculogenesis and angiogenesis. This study was designed to characterize its antitumor efficacy and possible mechanism in patients with advanced refractory synovial sarcoma. METHODS: Anlotinib's antitumor effect was evaluated in vivo and vitro. Downstream targets of anlotinib in treating synovial sarcoma were analyzed through microarray assay. Cell proliferation and apoptosis analyses were performed to evaluate the impact of candidate downstream gene depletion in synovial sarcoma cells. Microarray assay were carried out to investigate potential signal network related with candidate downstream gene. RESULTS: Anlotinib significantly suppresses synovial sarcoma proliferation in PDTX model and cell lines. Additionally, GINS1 (also named as PSF1, Partner of SLD Five 1), rather than other conventional gene target, was demonstrated to be a vital target of anlotinib's antitumor effect in synovial sarcoma through microarray assay. Expression of GINS1 was remarkably higher in synovial sarcoma tumor samples and related with poor outcome. Knockdown of GINS1 expression could remarkably inhibit proliferation and promote apoptosis in vitro. Meanwhile, through microarray assay, CITED2, EGR1, SGK1 and SPP1 were identified and further validated by qPCR/WB as downstream targets of GINS1. CONCLUSION: Anlotinib might suppress proliferation of SS through a novel downstream GINS1-regulated network which plays a vital function in SS proliferation and also demonstrated that targeting the GINS1-regulated signal pathway could be a potential strategy for management of SS.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Proteínas de Ligação a DNA/efeitos dos fármacos , Indóis/uso terapêutico , Proteínas de Neoplasias/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Quinolinas/uso terapêutico , Sarcoma Sinovial/tratamento farmacológico , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/genética , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Proteína 1 de Resposta de Crescimento Precoce/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Proteínas Imediatamente Precoces/efeitos dos fármacos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Osteopontina/efeitos dos fármacos , Osteopontina/genética , Osteopontina/metabolismo , Análise Serial de Proteínas , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/análise , Proteínas Repressoras/efeitos dos fármacos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Sarcoma Sinovial/genética , Transativadores/efeitos dos fármacos , Transativadores/genética , Transativadores/metabolismo
3.
Braz J Med Biol Res ; 49(12): e5805, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27878228

RESUMO

Machado-Joseph disease (MJD) or spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by expansion of the polyglutamine domain of the ataxin-3 (ATX3) protein. MJD/SCA3 is the most frequent autosomal dominant ataxia in many countries. The mechanism underlying MJD/SCA3 is thought to be mainly related to protein misfolding and aggregation leading to neuronal dysfunction followed by cell death. Currently, there are no effective treatments for patients with MJD/SCA3. Here, we report on the potential use of lithium carbonate and coenzyme Q10 to reduce cell death caused by the expanded ATX3 in cell culture. Cell viability and apoptosis were evaluated by MTT assay and by flow cytometry after staining with annexin V-FITC/propidium iodide. Treatment with lithium carbonate and coenzyme Q10 led to a significant increase in viability of cells expressing expanded ATX3 (Q84). In addition, we found that the increase in cell viability resulted from a significant reduction in the proportion of apoptotic cells. Furthermore, there was a significant change in the expanded ATX3 monomer/aggregate ratio after lithium carbonate and coenzyme Q10 treatment, with an increase in the monomer fraction and decrease in aggregates. The safety and tolerance of both drugs are well established; thus, our results indicate that lithium carbonate and coenzyme Q10 are good candidates for further in vivo therapeutic trials.


Assuntos
Ataxina-3/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Carbonato de Lítio/farmacologia , Doença de Machado-Joseph , Proteínas Repressoras/efeitos dos fármacos , Ubiquinona/análogos & derivados , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Doença de Machado-Joseph/tratamento farmacológico , Ubiquinona/farmacologia
4.
Braz. j. med. biol. res ; 49(12): e5805, 2016. graf
Artigo em Inglês | LILACS | ID: biblio-828178

RESUMO

Machado-Joseph disease (MJD) or spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by expansion of the polyglutamine domain of the ataxin-3 (ATX3) protein. MJD/SCA3 is the most frequent autosomal dominant ataxia in many countries. The mechanism underlying MJD/SCA3 is thought to be mainly related to protein misfolding and aggregation leading to neuronal dysfunction followed by cell death. Currently, there are no effective treatments for patients with MJD/SCA3. Here, we report on the potential use of lithium carbonate and coenzyme Q10 to reduce cell death caused by the expanded ATX3 in cell culture. Cell viability and apoptosis were evaluated by MTT assay and by flow cytometry after staining with annexin V-FITC/propidium iodide. Treatment with lithium carbonate and coenzyme Q10 led to a significant increase in viability of cells expressing expanded ATX3 (Q84). In addition, we found that the increase in cell viability resulted from a significant reduction in the proportion of apoptotic cells. Furthermore, there was a significant change in the expanded ATX3 monomer/aggregate ratio after lithium carbonate and coenzyme Q10 treatment, with an increase in the monomer fraction and decrease in aggregates. The safety and tolerance of both drugs are well established; thus, our results indicate that lithium carbonate and coenzyme Q10 are good candidates for further in vivo therapeutic trials.


Assuntos
Humanos , Ataxina-3/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Carbonato de Lítio/farmacologia , Doença de Machado-Joseph , Proteínas Repressoras/efeitos dos fármacos , Ubiquinona/análogos & derivados , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Doença de Machado-Joseph/tratamento farmacológico , Ubiquinona/farmacologia
5.
Biochimie ; 79(6): 359-64, 1997 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9310185

RESUMO

There are at least two mechanisms by which H2O2 induces DNA lesions in Escherichia coli: one in the presence of physiological iron levels and the other in low iron conditions. The survival as well as the induction of SOS response in different DNA repair mutant strains of E coli was evaluated after H2O2 treatment under low iron conditions (pretreatment with an iron chelator). Our results indicate that, in normal iron conditions RecA protein has a relevant role in recombination repair events, while in low iron conditions RecA protein is important as a positive regulator of the SOS response. On the other hand, the oxy delta R mutant is sensitive to the lethal effects of H2O2 only in low iron conditions and this sensitivity cannot be correlated with DNA strand breaks.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Proteínas de Ligação a DNA , Escherichia coli/genética , Peróxido de Hidrogênio/farmacologia , Deficiências de Ferro , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Resposta SOS em Genética , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Proteínas de Bactérias/efeitos dos fármacos , Meios de Cultura , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli , Proteínas Repressoras/efeitos dos fármacos , Resposta SOS em Genética/efeitos dos fármacos , Fatores de Transcrição/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA