Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 534
Filtrar
1.
Clin Breast Cancer ; 24(7): e633-e644.e2, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38997857

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. FAM3B, a secreted protein, has been extensively studied in various types of tumors. However, its function in breast cancer remains poorly understood. METHODS: We analyzed FAM3B expression data from breast cancer patients available at TCGA database and overall survival was analyzed by using the Kaplan-Meier plotter. MDA-MB-231 TNBC tumor cell line and hormone-responsive MCF-7 cell lines were transfected to overexpress FAM3B. We assessed cell death, tumorigenicity, and invasiveness in vitro through MTT analysis, flow cytometry assays, anchorage-independent tumor growth, and wound healing assays, respectively. We performed in vivo evaluation by tumor xenograft in nude mice. RESULTS: In silico analysis revealed that FAM3B expression was lower in all breast tumors. However, TNBC patients with high FAM3B expression had a poor prognosis. FAM3B overexpression protected MDA-MB-231 cells from cell death, with increased expression of Bcl-2 and Bcl-xL, and reduced caspase-3 activity. MDA-MB-231 cells overexpressing FAM3B also exhibited increased tumorigenicity and migration rates in vitro, displaying increased tumor growth and reduced survival rates in xenotransplanted nude mice. This phenotype is accompanied by the upregulation of EMT-related genes Slug, Snail, TGFBR2, vimentin, N-cadherin, MMP-2, MMP-9, and MMP-14. However, these effects were not observed in the MCF-7 cells overexpressing FAM3B. CONCLUSION: FAM3B overexpression contributes to tumor growth, promotion of metastasis, and, consequently, leads to a poor prognosis in the most aggressive forms of breast cancer. Future clinical research is necessary to validate FAM3B as both a diagnostic and a therapeutic strategy for TNBC.


Assuntos
Apoptose , Camundongos Nus , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Animais , Feminino , Camundongos , Prognóstico , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Citocinas/metabolismo
2.
Braz J Med Biol Res ; 57: e13257, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38958362

RESUMO

Rivaroxaban is a direct factor Xa inhibitor. Its interindividual variability is large and may be connected to the occurrence of adverse drug reactions or drug inefficacy. Pharmacogenetics studies concentrating on the reasons underlying rivaroxaban's inadequate response could help explain the differences in treatment results and medication safety profiles. Against this background, this study evaluated whether polymorphisms in the gene encoding the ABCG2 transporter modify the pharmacokinetic characteristics of rivaroxaban. A total of 117 healthy volunteers participated in two bioequivalence experiments with a single oral dose of 20 mg rivaroxaban, with one group fasting and the other being fed. Ultra-high-performance liquid chromatography coupled with mass spectrometry was employed to determine the plasma concentrations of rivaroxaban, and the WinNonlin program was used to calculate the pharmacokinetics parameters. In the fasting group, the rivaroxaban pharmacokinetic parameters of Vd (508.27 vs 334.45 vs 275.59 L) and t1/2 (41.04 vs 16.43 vs 15.47 h) were significantly higher in ABCG2 421 A/A genotype carriers than in ABCG2 421 C/C and 421 C/A genotype carriers (P<0.05). The mean values of Cmax (145.81 vs 176.27 vs 190.19 ng/mL), AUC0-t (1193.81 vs 1374.69 vs 1570.77 ng/mL·h), and Cl (11.82 vs 14.50 vs 13.01 mL/h) for these groups were lower, but this difference was not statistically significant (P>0.05). These findings suggested that the ABCG2 421 A/A genotype may impact rivaroxaban parameters after a single dose in healthy subjects. This finding must be validated before it is applied in clinical practice.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Inibidores do Fator Xa , Genótipo , Proteínas de Neoplasias , Rivaroxabana , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Área Sob a Curva , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Cromatografia Líquida de Alta Pressão , Inibidores do Fator Xa/farmacocinética , Inibidores do Fator Xa/administração & dosagem , Inibidores do Fator Xa/sangue , Voluntários Saudáveis , Proteínas de Neoplasias/genética , Polimorfismo Genético , Rivaroxabana/farmacocinética , Rivaroxabana/administração & dosagem , Equivalência Terapêutica
3.
J Cell Biochem ; 125(8): e30612, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38923575

RESUMO

Glioblastoma (GBM) is the most common form of malignant primary brain tumor with a high mortality rate. The aim of the present study was to investigate the clinical significance of Family with Sequence Similarity 3, Member C, FAM3C, in GBM using bioinformatic-integrated analysis. First, we performed the transcriptomic integration analysis to assess the expression profile of FAM3C in GBM using several data sets (RNA-sequencing and scRNA-sequencing), which were obtained from TCGA and GEO databases. By using the STRING platform, we investigated FAM3C-coregulated genes to construct the protein-protein interaction network. Next, Metascape, Enrichr, and CIBERSORT databases were used. We found FAM3C high expression in GBM with poor survival rates. Further, we observed, via FAM3C coexpression network analysis, that FAM3C plays key roles in several hallmarks of cancer. Surprisingly, we also highlighted five FAM3C­coregulated genes overexpressed in GBM. Specifically, we demonstrated the association between the high expression of FAM3C and the abundance of the different immune cells, which may markedly worsen GBM prognosis. For the first time, our findings suggest that FAM3C not only can be a new emerging biomarker with promising therapeutic values to GBM patients but also gave a new insight into a potential resource for future GBM studies.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Mapas de Interação de Proteínas , Prognóstico , Transcriptoma , Redes Reguladoras de Genes , Biologia Computacional/métodos , Taxa de Sobrevida , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/biossíntese , Citocinas
4.
Genes (Basel) ; 15(5)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38790220

RESUMO

This systematic review and meta-analysis aimed to verify the association between the genetic variants of adenosine triphosphate (ATP)-binding cassette subfamily B member 1 (ABCB1) and ATP-binding cassette subfamily G member 2 (ABCG2) genes and the presence and severity of gefitinib-associated adverse reactions. We systematically searched PubMed, Virtual Health Library/Bireme, Scopus, Embase, and Web of Science databases for relevant studies published up to February 2024. In total, five studies were included in the review. Additionally, eight genetic variants related to ABCB1 (rs1045642, rs1128503, rs2032582, and rs1025836) and ABCG2 (rs2231142, rs2231137, rs2622604, and 15622C>T) genes were analyzed. Meta-analysis showed a significant association between the ABCB1 gene rs1045642 TT genotype and presence of diarrhea (OR = 5.41, 95% CI: 1.38-21.14, I2 = 0%), the ABCB1 gene rs1128503 TT genotype and CT + TT group and the presence of skin rash (OR = 4.37, 95% CI: 1.51-12.61, I2 = 0% and OR = 6.99, 95%CI: 1.61-30.30, I2= 0%, respectively), and the ABCG2 gene rs2231142 CC genotype and presence of diarrhea (OR = 3.87, 95% CI: 1.53-9.84, I2 = 39%). No ABCB1 or ABCG2 genes were positively associated with the severity of adverse reactions associated with gefitinib. In conclusion, this study showed that ABCB1 and ABCG2 variants are likely to exhibit clinical implications in predicting the presence of adverse reactions to gefitinib.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Gefitinibe , Proteínas de Neoplasias , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Humanos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Gefitinibe/efeitos adversos , Proteínas de Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Antineoplásicos/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/genética , Genótipo
5.
Genes (Basel) ; 15(4)2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38674407

RESUMO

Multidrug resistance (MDR) commonly leads to cancer treatment failure because cancer cells often expel chemotherapeutic drugs using ATP-binding cassette (ABC) transporters, which reduce drug levels within the cells. This study investigated the clinical characteristics and single nucleotide variant (SNV) in ABCB1, ABCC1, ABCC2, ABCC4, and ABCG2, and their association with mortality in pediatric patients with central nervous system tumors (CNST). Using TaqMan probes, a real-time polymerase chain reaction genotyped 15 SNPs in 111 samples. Patients were followed up until death or the last follow-up day using the Cox proportional hazards model. An association was found between the rs1045642 (ABCB1) in the recessive model (HR = 2.433, 95% CI 1.098-5.392, p = 0.029), and the ICE scheme in the codominant model (HR = 9.810, 95% CI 2.74-35.06, p ≤ 0.001), dominant model (HR = 6.807, 95% CI 2.87-16.103, p ≤ 0.001), and recessive model (HR = 6.903, 95% CI 2.915-16.544, p = 0.038) significantly increased mortality in this cohort of patients. An association was also observed between the variant rs3114020 (ABCG2) and mortality in the codominant model (HR = 5.35, 95% CI 1.83-15.39, p = 0.002) and the dominant model (HR = 4.421, 95% CI 1.747-11.185, p = 0.002). A significant association between the ICE treatment schedule and increased mortality risk in the codominant model (HR = 6.351, 95% CI 1.831-22.02, p = 0.004, HR = 9.571, 95% CI 2.856-32.07, p ≤ 0.001), dominant model (HR = 6.592, 95% CI 2.669-16.280, p ≤ 0.001), and recessive model (HR = 5.798, 95% CI 2.411-13.940, p ≤ 0.001). The genetic variants rs3114020 in the ABCG2 gene and rs1045642 in the ABCB1 gene and the ICE chemotherapy schedule were associated with an increased mortality risk in this cohort of pediatric patients with CNST.


Assuntos
Neoplasias do Sistema Nervoso Central , Proteína 2 Associada à Farmacorresistência Múltipla , Polimorfismo de Nucleotídeo Único , Humanos , Masculino , Feminino , Criança , Pré-Escolar , Lactente , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/mortalidade , Neoplasias do Sistema Nervoso Central/patologia , Estudos de Coortes , Adolescente , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Marcadores Genéticos/genética , Proteínas de Neoplasias/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Biomarcadores Tumorais/genética
6.
Genes (Basel) ; 14(12)2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38137006

RESUMO

Breast cancer is one of the leading causes of death in women around the world. Over time, many genes and mutations that are associated with the development of this disease have been identified. However, the specific role of many genes has not yet been fully elucidated. Higher ARID4B expression has been identified as a risk factor for diverse cancer types. Silencing experiments also showed that ARID4B is associated with developing cancer-associated characteristics. However, no transcriptomic studies have shown the overall cellular effect of loss of function in breast cancer in humans. This study addresses the impact of loss-of-function mutations in breast cancer MCF-7 cells. Using the CRISPR/Cas9 system, we generated mutations that caused heterozygous truncated proteins, isolating three monoclonal lines carrying insertions and deletions in ARID4B. We observed reduced proliferation and migration in in vitro experiments. In addition, from RNA-seq assays, a differential expression analysis shows known and novel deregulated cancer-associate pathways in mutated cells supporting the impact of ARID4B. For example, we found the AKT-PI3K pathway to be altered at the transcript level but through different genes than those reported for ARID4B. Our transcriptomic results also suggest new insights into the role of ARID4B in aggressiveness by the epithelial-to-mesenchymal transition and TGF-ß pathways and in metabolism through cholesterol and mevalonate pathways. We also performed exome sequencing to show that no off-target effects were apparent. In conclusion, the ARID4B gene is associated with some aggressive phenotypes in breast cancer cells.


Assuntos
Neoplasias da Mama , Sistemas CRISPR-Cas , Humanos , Feminino , Células MCF-7 , Neoplasias da Mama/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Antígenos de Neoplasias/genética , Proteínas de Neoplasias/genética
7.
J Mol Biol ; 435(8): 168033, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36858171

RESUMO

The nuclear protein 1 (NUPR1) is an intrinsically disordered protein involved in stress-mediated cellular conditions. Its paralogue nuclear protein 1-like (NUPR1L) is p53-regulated, and its expression down-regulates that of the NUPR1 gene. Peptidyl-arginine deiminase 4 (PADI4) is an isoform of a family of enzymes catalyzing arginine to citrulline conversion; it is also involved in stress-mediated cellular conditions. We characterized the interaction between NUPR1 and PADI4 in vitro, in silico, and in cellulo. The interaction of NUPR1 and PADI4 occurred with a dissociation constant of 18 ± 6 µM. The binding region of NUPR1, mapped by NMR, was a hydrophobic polypeptide patch surrounding the key residue Ala33, as pinpointed by: (i) computational results; and, (ii) site-directed mutagenesis of residues of NUPR1. The association between PADI4 and wild-type NUPR1 was also assessed in cellulo by using proximity ligation assays (PLAs) and immunofluorescence (IF), and it occurred mainly in the nucleus. Moreover, binding between NUPR1L and PADI4 also occurred in vitro with an affinity similar to that of NUPR1. Molecular modelling provided information on the binding hot spot for PADI4. This is an example of a disordered partner of PADI4, whereas its other known interacting proteins are well-folded. Altogether, our results suggest that the NUPR1/PADI4 complex could have crucial functions in modulating DNA-repair, favoring metastasis, or facilitating citrullination of other proteins.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Cromatina , Proteínas Intrinsicamente Desordenadas , Proteínas de Neoplasias , Proteínas Nucleares , Proteína-Arginina Desiminase do Tipo 4 , Sequência de Bases , Cromatina/química , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ligação Proteica , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
8.
Gene ; 865: 147325, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36870425

RESUMO

COVID-19 has a broad spectrum of clinical manifestations. We assessed the impact of single nucleotide polymorphisms (SNPs) of inflammasome genesas risk factors for progression toCOVID-19 critical outcomes, such as mechanical ventilation support (MVS) or death.The study included 451 hospitalized individuals followed up at the INI/FIOCRUZ, Rio de Janeiro, Brazil, from 06/2020 to 03/2021. SNPs genotyping was determined by Real-Time PCR. We analyzed risk factors for progression to MVS (n = 174[38.6 %]) or death (n = 175[38.8 %])as a result of COVID-19 by Cox proportional hazardmodels.Slower progression toMVSwas associated with allele G (aHR = 0.66;P = 0.005) or the genotype G/G (aHR = 0.391;P = 0.006) in the NLRP3 rs10754558 or the allele G (aHR = 0.309;P = 0.004) in the IL1ßrs1143634, while C allele in the NLRP3 rs4612666 (aHR = 2.342;P = 0.006) or in the rs10754558 (aHR = 2.957;P = 0.005) were associated with faster progression to death. Slower progression to death was associated to allele G (aHR = 0.563;P = 0.006) or the genotype A/G (aHR = 0.537;P = 0.005) in the CARD8 rs6509365; the genotype A/C in the IFI16 rs1101996 (aHR = 0.569;P = 0.011); the genotype T/T (aHR = 0.394;P = 0.004) or allele T (aHR = 0.68;P = 0.006) in the NLRP3 rs4612666, and the genotype G/G (aHR = 0.326;P = 0.005) or allele G (aHR = 0,68;P = 0.014) in the NLRP3 rs10754558. Our results suggest that inflammasome genetic variations might influence the critical clinical course of COVID-19.


Assuntos
COVID-19 , Inflamassomos , Humanos , Brasil/epidemiologia , Proteínas Adaptadoras de Sinalização CARD/genética , COVID-19/genética , Predisposição Genética para Doença , Genótipo , Inflamassomos/genética , Proteínas de Neoplasias/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Polimorfismo de Nucleotídeo Único , Respiração Artificial
9.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674608

RESUMO

Bladder cancer (BC) is the most common neoplasm of the urinary tract, which originates in the epithelium that covers the inner surface of the bladder. The molecular BC profile has led to the development of different classifications of non-muscle invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). However, the genomic BC landscape profile of the Mexican population, including NMIBC and MIBC, is unknown. In this study, we aimed to identify somatic single nucleotide variants (SNVs) and copy number variations (CNVs) in Mexican patients with BC and their associations with clinical and pathological characteristics. We retrospectively evaluated 37 patients treated between 2012 and 2021 at the National Cancer Institute-Mexico (INCan). DNA samples were obtained from paraffin-embedded tumor tissues and exome sequenced. Strelka2 and Lancet packages were used to identify SNVs and insertions or deletions. FACETS was used to determine CNVs. We found a high frequency of mutations in TP53 and KMT2D, gains in 11q15.5 and 19p13.11-q12, and losses in 7q11.23. STAG2 mutations and 1q11.23 deletions were also associated with NMIBC and low histologic grade.


Assuntos
Variações do Número de Cópias de DNA , Proteínas de Ligação a DNA , Proteínas de Neoplasias , Neoplasias da Bexiga Urinária , Humanos , México , Mutação , Invasividade Neoplásica , Estudos Retrospectivos , Neoplasias da Bexiga Urinária/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Neoplasias/genética
10.
Biochimie ; 208: 31-37, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36403755

RESUMO

Data emerged from the last 20 years of basic research on tumor antigens positioned the type I MAGE (Melanoma Antigen GEnes - I or MAGE-I) family as cancer driver factors. MAGE-I gene expression is mainly restricted to normal reproductive tissues. However, abnormal re-expression in cancer unbalances the cell status towards enhanced oncogenic activity or reduced tumor suppression. Anomalous MAGE-I gene re-expression in cancer is attributed to altered epigenetic-mediated chromatin silencing. Still, emerging data indicate that MAGE-I can be regulated at protein level. Results from different laboratories suggest that after its anomalous re-expression, specific MAGE-I proteins can be regulated by well-known signaling pathways or key cellular processes that finally potentiate the cancer cell phenotype. Thus, MAGE-I proteins both regulate and are regulated by cancer-related pathways. Here, we present an updated review highlighting the recent findings on the regulation of MAGE-I by oncogenic pathways and the potential consequences in the tumor cell behavior.


Assuntos
Melanoma , Proteínas de Neoplasias , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Antígenos de Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA