Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 93(2): e20200452, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34076039

RESUMO

Microsatellite primers pairs were developed for the Neotropical tree Roupala montana var. brasiliensis for use in studies on genetic diversity, mating system, and gene flow. Forty-two primer pairs were developed, resulting in 27 polymorphic loci, with two to 27 alleles per locus. The primer pairs were validated against 34 R. montana var. brasiliensis adult trees from four populations. The observed (H o) and expected (H e)heterozygosities ranged among loci from 0.061 to 0.930 (mean of 0.544) and from 0.116 to 0.950 (mean of 0.700), respectively. Null alleles were observed for ten loci. No genotypic linkage disequilibrium was detected in any pair of loci. This set of loci is suitable for population genetic studies of the species.


Assuntos
Repetições de Microssatélites , Proteaceae/genética , Genética Populacional , Genótipo , Polimorfismo Genético
2.
New Phytol ; 210(2): 694-708, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26680017

RESUMO

Heteroblasty, the temporal development of the meristem, can produce diverse leaf shapes within a plant. Gevuina avellana, a tree from the South American temperate rainforest shows strong heteroblasty affecting leaf shape, transitioning from juvenile simple leaves to highly pinnate adult leaves. Light availability within the forest canopy also modulates its leaf size and complexity. Here we studied how the interaction between the light environment and the heteroblastic progression of leaves is coordinated in this species. We used RNA-seq on the Illumina platform to compare the range of transcriptional responses in leaf primordia of G. avellana at different heteroblastic stages and growing under different light environments. We found a steady up-regulation of SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL), NAC, YUCCA and AGAMOUS-LIKE genes associated with increases in age, leaf complexity, and light availability. In contrast, expression of TCP, TPR and KNOTTED1 homeobox genes showed a sustained down-regulation. Additionally, genes involved in auxin synthesis/transport and jasmonate activity were differentially expressed, indicating an active regulation of processes controlled by these hormones. Our large-scale transcriptional analysis of the leaf primordia of G. avellana sheds light on the integration of internal and external cues during heteroblastic development in this species.


Assuntos
Perfilação da Expressão Gênica/métodos , Genes de Plantas , Proteínas de Plantas/genética , Proteaceae/crescimento & desenvolvimento , Proteaceae/genética , Árvores/crescimento & desenvolvimento , Árvores/genética , Análise por Conglomerados , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Ontologia Genética , Luz , Anotação de Sequência Molecular , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/metabolismo , Análise de Componente Principal , Proteaceae/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Floresta Úmida , Árvores/efeitos da radiação , Regulação para Cima/genética
3.
Conserv Biol ; 21(1): 232-40, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17298529

RESUMO

Deforestation of temperate forests has created landscapes of forest remnants in matrices of intense human use. We studied the genetic effects of fragmentation in southern Chile on Embothrium coccineum J.R. et G. Forster, an early colonizing, bird-pollinated tree. We tested the hypothesis that, because of its self-incompatibility and life-history strategy, E. coccineum is less strongly affected by fragmentation. We studied the effects of reduced population size and increased isolation on population genetic structure and early performance of progeny. Samples were collected from spatially isolated trees and six fragments of differing sizes (small, 1 ha; medium, 20 ha; large, >150 ha). Based on isozyme polymorphisms we estimated parameters of genetic diversity, divergence, and inbreeding for adults and greenhouse-grown progeny. We also measured germination, seedling growth, and outcrossing rates on progeny arrays. Genetic variation of adults did not correlate significantly with population size, as expected, given that fragmentation occurred relatively recently. Weak effects of fragmentation were measured on progeny. Only adults yielded significant inbreeding. Similar total genetic diversity was found in adults and progeny. Low but significant genetic differentiation existed among adult and progeny populations. Seedling growth correlated positively with the effective number of alleles, showing deleterious effects of inbreeding on progeny. Seeds from small fragments had the highest outcrossing rates and germination success, indicating that higher pollinator activity in such fragments reduced selfing, thereby buffering genetic erosion and maintaining adaptive variation. The effects of forest fragmentation were detectable in E. coccineum, but these effects will probably not be detrimental to the viability of remnant populations because small, fragmented populations demonstrated higher levels of gene flow and lower inbreeding than larger stands. Pioneer species that are insensitive to forest clearing may be crucial in recovery plans to facilitate the establishment of species intolerant to such disturbance.


Assuntos
Conservação dos Recursos Naturais , Variação Genética , Genética Populacional , Endogamia , Proteaceae/genética , Plântula/crescimento & desenvolvimento , Árvores , Chile , Isoenzimas/genética , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA