Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Alzheimers Dis ; 84(4): 1415-1430, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34719501

RESUMO

One of the changes found in the brain in Alzheimer's disease (AD) is increased calpain, derived from calcium dysregulation, oxidative stress, and/or neuroinflammation, which are all assumed to be basic pillars in neurodegenerative diseases. The role of calpain in synaptic plasticity, neuronal death, and AD has been discussed in some reviews. However, astrocytic calpain changes sometimes appear to be secondary and consequent to neuronal damage in AD. Herein, we explore the possibility of calpain-mediated astroglial reactivity in AD, both preceding and during the amyloid phase. We discuss the types of brain calpains but focus the review on calpains 1 and 2 and some important targets in astrocytes. We address the signaling involved in controlling calpain expression, mainly involving p38/mitogen-activated protein kinase and calcineurin, as well as how calpain regulates the expression of proteins involved in astroglial reactivity through calcineurin and cyclin-dependent kinase 5. Throughout the text, we have tried to provide evidence of the connection between the alterations caused by calpain and the metabolic changes associated with AD. In addition, we discuss the possibility that calpain mediates amyloid-ß clearance in astrocytes, as opposed to amyloid-ß accumulation in neurons.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Calpaína/metabolismo , Plasticidade Neuronal , Doença de Alzheimer/patologia , Animais , Astrócitos/patologia , Calcineurina/metabolismo , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Humanos , Doenças Neuroinflamatórias/metabolismo
2.
Exp Neurol ; 346: 113866, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34537209

RESUMO

Attention deficit/Hyperactivity disorder (ADHD) is one of the most diagnosed psychiatric disorders nowadays. The core symptoms of the condition include hyperactivity, impulsiveness and inattention. The main pharmacological treatment consists of psychostimulant drugs affecting Dopamine Transporter (DAT) function. We have previously shown that genetically modified mice lacking p35 protein (p35KO), which have reduced Cdk5 activity, present key hallmarks resembling those described in animal models useful for studying ADHD. The p35KO mouse displays spontaneous hyperactivity and shows a calming effect of methylphenidate or amphetamine treatment. Interestingly, dopaminergic neurotransmission is altered in these mice as they have an increased Dopamine (DA) content together with a low DA turnover. This led us to hypothesize that the lack of Cdk5 activity affects DAT expression and/or function in this animal model. In this study, we performed biochemical assays, cell-based approaches, quantitative fluorescence analysis and functional studies that allowed us to demonstrate that p35KO mice exhibit decreased DA uptake and reduced cell surface DAT expression levels in the striatum (STR). These findings are supported by in vitro observations in which the inhibition of Cdk5 activity in N2a cells induced a significant increase in constitutive DAT endocytosis with a concomitant increase in DAT localization to recycling endosomes. Taken together, these data provide evidences regarding the role of Cdk5/p35 in DAT expression and function, thus contributing to the knowledge of DA neurotransmission physiology and also providing therapeutic options for the treatment of DA pathologies such as ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Quinase 5 Dependente de Ciclina/deficiência , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/biossíntese , Animais , Transtorno do Deficit de Atenção com Hiperatividade/genética , Linhagem Celular , Quinase 5 Dependente de Ciclina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Ativação Enzimática/fisiologia , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Neuroscience ; 471: 20-31, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34303780

RESUMO

Voltage-gated Ca2+ (CaV) channels regulate multiple cell processes, including neurotransmitter release, and have been associated with several pathological conditions, such as neuropathic pain. Cdk5, a neuron-specific kinase, may phosphorylate CaV channels, altering their functional expression. During peripheral nerve injury, upregulation of CaV channels and Cdk5 in the dorsal root ganglia (DRG) and the spinal cord, has been correlated with allodynia. We recently reported an increase in the amplitude of the C component of the compound action potential (cAP) of afferent fibers in animals with allodynia induced by L5-6 spinal nerve ligation (SNL), recorded in the corresponding dorsal roots. This was related to an increase in T-type (CaV3.2) channels generated by Cdk5-mediated phosphorylation. Here, we show that CaV channel functional expression is also altered in the L4 adjacent intact afferent fibers in rats with allodynia induced by L5-6 SNL. Western blot analysis showed that both Cdk5 and CaV3.2 total levels are not increased in the DRG L3-4, but their subcellular distribution changes by concentrating on the neuronal soma. Likewise, the Cdk5 inhibitor olomoucine affected the rapid and the slow C components of the cAP recorded in the dorsal roots. Patch-clamp recordings revealed an increase in T- and N-type currents recorded in the soma of acute isolated L3-4 sensory neurons after L5-6 SNL, which was prevented by olomoucine. These findings suggest changes in CaV channels location and function in L3-4 afferent fibers associated with Cdk5-mediated phosphorylation after L5-6 SNL, which may contribute to nerve injury-induced allodynia.


Assuntos
Neuralgia , Nervos Espinhais , Potenciais de Ação , Animais , Quinase 5 Dependente de Ciclina , Gânglios Espinais , Hiperalgesia , Neurônios Aferentes , Ratos , Ratos Sprague-Dawley
4.
J Alzheimers Dis ; 82(s1): S141-S161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33016916

RESUMO

The neurovascular unit (NVU) is responsible for synchronizing the energetic demand, vasodynamic changes, and neurochemical and electrical function of the brain through a closed and interdependent interaction of cell components conforming to brain tissue. In this review, we will focus on cyclin-dependent kinase 5 (CDK5) as a molecular pivot, which plays a crucial role in the healthy function of neurons, astrocytes, and the endothelium and is implicated in the cross-talk of cellular adhesion signaling, ion transmission, and cytoskeletal remodeling, thus allowing the individual and interconnected homeostasis of cerebral parenchyma. Then, we discuss how CDK5 overactivation affects the integrity of the NVU in Alzheimer's disease (AD) and cognitive impairment; we emphasize how CDK5 is involved in the excitotoxicity spreading of glutamate and Ca2+ imbalance under acute and chronic injury. Additionally, we present pharmacological and gene therapy strategies for producing partial depletion of CDK5 activity on neurons, astrocytes, or endothelium to recover neuroplasticity and neurotransmission, suggesting that the NVU should be the targeted tissue unit in protective strategies. Finally, we conclude that CDK5 could be effective due to its intervention on astrocytes by its end feet on the endothelium and neurons, acting as an intermediary cell between systemic and central communication in the brain. This review provides integrated guidance regarding the pathogenesis of and potential repair strategies for AD.


Assuntos
Astrócitos/metabolismo , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Inativação Gênica/fisiologia , Acoplamento Neurovascular/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Ensaios Clínicos como Assunto/métodos , Inativação Gênica/efeitos dos fármacos , Humanos , Acoplamento Neurovascular/efeitos dos fármacos , Inibidores de Proteínas Quinases/administração & dosagem
5.
Front Endocrinol (Lausanne) ; 11: 561256, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329381

RESUMO

The nuclear receptor PPARγ is essential to maintain whole-body glucose homeostasis and insulin sensitivity, acting as a master regulator of adipogenesis, lipid, and glucose metabolism. Its activation through natural or synthetic ligands induces the recruitment of coactivators, leading to transcription of target genes such as cytokines and hormones. More recently, post translational modifications, such as PPARγ phosphorylation at Ser273 by CDK5 in adipose tissue, have been linked to insulin resistance trough the dysregulation of expression of a specific subset of genes. Here, we investigate how this phosphorylation may disturb the interaction between PPARγ and some coregulator proteins as a new mechanism that may leads to insulin resistance. Through cellular and in vitro assays, we show that PPARγ phosphorylation inhibition increased the activation of the receptor, therefore the increased recruitment of PGC1-α and TIF2 coactivators, whilst decreases the interaction with SMRT and NCoR corepressors. Moreover, our results show a shift in the coregulators interaction domains preferences, suggesting additional interaction interfaces formed between the phosphorylated PPARγ and some coregulator proteins. Also, we observed that the CDK5 presence disturb the PPARγ-coregulator's synergy, decreasing interaction with PGC1-α, TIF2, and NCoR, but increasing coupling of SMRT. Finally, we conclude that the insulin resistance provoked by PPARγ phosphorylation is linked to a differential coregulators recruitment, which may promote dysregulation in gene expression.


Assuntos
Resistência à Insulina/fisiologia , PPAR gama/metabolismo , Serina/metabolismo , Células 3T3 , Adipócitos/metabolismo , Animais , Células COS , Chlorocebus aethiops , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Células HEK293 , Humanos , Camundongos , PPAR gama/genética , Fosforilação/fisiologia , Serina/genética
7.
Biochem Biophys Res Commun ; 524(1): 255-261, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31983427

RESUMO

Neurotransmission is one of the most important processes in neuronal communication and depends largely on Ca2+ entering synaptic terminals through voltage-gated Ca2+ (CaV) channels. Although the contribution of L-type CaV channels in neurotransmission has not been unambiguously established, increasing evidence suggests a role for these proteins in noradrenaline, dopamine, and GABA release. Here we report the regulation of L-type channels by Cdk5, and its possible effect on GABA release in the substantia nigra pars reticulata (SNpr). Using patch-clamp electrophysiology, we show that Cdk5 inhibition by Olomoucine significantly increases current density through CaV1.3 (L-type) channels heterologously expressed in HEK293 cells. Likewise, in vitro phosphorylation showed that Cdk5 phosphorylates residue S1947 in the C-terminal region of the pore-forming subunit of CaV1.3 channels. Consistent with this, the mutation of serine into alanine (S1947A) prevented the regulation of Cdk5 on CaV1.3 channel activity. Our data also revealed that the inhibition of Cdk5 increased the frequency of high K+-evoked miniature inhibitory postsynaptic currents in rat SNpr neurons, acting on L-type channels. These results unveil a novel regulatory mechanism of GABA release in the SNpr that involves a direct action of Cdk5 on L-type channels.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Potenciais Pós-Sinápticos Inibidores , Neostriado/metabolismo , Receptores de GABA-A/metabolismo , Substância Negra/metabolismo , Animais , Animais Recém-Nascidos , Canais de Cálcio Tipo L/química , Células HEK293 , Humanos , Masculino , Fosforilação , Ratos Wistar , Ácido gama-Aminobutírico/metabolismo
8.
Neuroendocrinology ; 110(6): 535-551, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31509830

RESUMO

BACKGROUND: Synaptic plasticity is the neuronal capacity to modify the function and structure of dendritic spines (DS) in response to neuromodulators. Sex steroids, particularly 17ß-estradiol (E2) and progesterone (P4), are key regulators in the control of DS formation through multiprotein complexes including WAVE1 protein, and are thus fundamental for the development of learning and memory. OBJECTIVES: The aim of this work was to evaluate the molecular switch Cdk5 kinase/protein phosphatase 2A (PP2A) in the control of WAVE1 protein (phosphorylation/dephosphorylation) and the regulation of WAVE1 and cortactin to the Arp2/3 complex, in response to rapid treatments with E2 and P4 in cortical neuronal cells. RESULTS: Rapid treatment with E2 and P4 modified neuronal morphology and significantly increased the number of DS. This effect was reduced by the use of a Cdk5 inhibitor (Roscovitine). In contrast, inhibition of PP2A with PP2A dominant negative construct significantly increased DS formation, evidencing the participation of kinase/phosphatase in the regulation of WAVE1 in DS formation induced by E2 and P4. Cortactin regulates DS formation via Src and PAK1 kinase induced by E2 and P4. Both cortactin and WAVE1 signal to Arp2/3 complex to synergistically promote actin nucleation. CONCLUSION: These results suggest that E2 and P4 dynamically regulate neuron morphology through nongenomic signaling via cortactin/WAVE1-Arp2/3 complex. The control of these proteins is tightly orchestrated by phosphorylation, where kinases and phosphatases are essential for actin nucleation and, finally, DS formation. This work provides a deeper understanding of the biological actions of sex steroids in the regulation of DS turnover and neuronal plasticity processes.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Córtex Cerebral/fisiologia , Espinhas Dendríticas/fisiologia , Estradiol/fisiologia , Progesterona/fisiologia , Proteína Fosfatase 2/metabolismo , Transdução de Sinais/fisiologia , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/efeitos dos fármacos , Animais , Córtex Cerebral/efeitos dos fármacos , Cortactina , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Espinhas Dendríticas/efeitos dos fármacos , Embrião de Mamíferos , Estradiol/farmacologia , Progesterona/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteína Fosfatase 2/efeitos dos fármacos , Ratos , Roscovitina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Família de Proteínas da Síndrome de Wiskott-Aldrich/efeitos dos fármacos
9.
J Neurosci ; 40(2): 283-296, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31744861

RESUMO

Voltage-gated T-type Ca2+ (CaV3) channels regulate diverse physiological events, including neuronal excitability, and have been linked to several pathological conditions such as absence epilepsy, cardiovascular diseases, and neuropathic pain. It is also acknowledged that calcium/calmodulin-dependent protein kinase II and protein kinases A and C regulate the activity of T-type channels. Interestingly, peripheral nerve injury induces tactile allodynia and upregulates CaV3.2 channels and cyclin-dependent kinase 5 (Cdk5) in dorsal root ganglia (DRG) and spinal dorsal horn. Here, we report that recombinant CaV3.2 channels expressed in HEK293 cells are regulatory targets of Cdk5. Site-directed mutagenesis showed that the relevant sites for this regulation are residues S561 and S1987. We also found that Cdk5 may regulate CaV3.2 channel functional expression in rats with mechanical allodynia induced by spinal nerve ligation (SNL). Consequently, the Cdk5 inhibitor olomoucine affected the compound action potential recorded in the spinal nerves, as well as the paw withdrawal threshold. Likewise, Cdk5 expression was upregulated after SNL in the DRG. These findings unveil a novel mechanism for how phosphorylation may regulate CaV3.2 channels and suggest that increased channel activity by Cdk5-mediated phosphorylation after SNL contributes nerve injury-induced tactile allodynia.SIGNIFICANCE STATEMENT Neuropathic pain is a current public health challenge. It can develop as a result of injury or nerve illness. It is acknowledged that the expression of various ion channels can be altered in neuropathic pain, including T-type Ca2+ channels that are expressed in sensory neurons, where they play a role in the regulation of cellular excitability. The present work shows that the exacerbated expression of Cdk5 in a preclinical model of neuropathic pain increases the functional expression of CaV3.2 channels. This finding is relevant for the understanding of the molecular pathophysiology of the disease. Additionally, this work may have a substantial translational impact, since it describes a novel molecular pathway that could represent an interesting therapeutic alternative for neuropathic pain.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Potenciais de Ação/fisiologia , Animais , Células HEK293 , Humanos , Ligadura , Masculino , Traumatismos dos Nervos Periféricos/metabolismo , Fosforilação , Ratos , Ratos Wistar , Nervos Espinhais/lesões , Nervos Espinhais/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA