Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1392744, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035356

RESUMO

Background: Paracoccidioidomycosis (PCM) is a systemic endemic fungal disease prevalent in Latin America. Previous studies revealed that host immunity against PCM is tightly regulated by several suppressive mechanisms mediated by tolerogenic plasmacytoid dendritic cells, the enzyme 2,3 indoleamine dioxygenase (IDO-1), regulatory T-cells (Tregs), and through the recruitment and activation of myeloid-derived suppressor cells (MDSCs). We have recently shown that Dectin-1, TLR2, and TLR4 signaling influence the IDO-1-mediated suppression caused by MDSCs. However, the contribution of these receptors in the production of important immunosuppressive molecules used by MDSCs has not yet been explored in pulmonary PCM. Methods: We evaluated the expression of PD-L1, IL-10, as well as nitrotyrosine by MDSCs after anti-Dectin-1, anti-TLR2, and anti-TLR4 antibody treatment followed by P. brasiliensis yeasts challenge in vitro. We also investigated the influence of PD-L1, IL-10, and nitrotyrosine in the suppressive activity of lung-infiltrating MDSCs of C57BL/6-WT, Dectin-1KO, TLR2KO, and TLR4KO mice after in vivo fungal infection. The suppressive activity of MDSCs was evaluated in cocultures of isolated MDSCs with activated T-cells. Results: A reduced expression of IL-10 and nitrotyrosine was observed after in vitro anti-Dectin-1 treatment of MDSCs challenged with fungal cells. This finding was further confirmed in vitro and in vivo by using Dectin-1KO mice. Furthermore, MDSCs derived from Dectin-1KO mice showed a significantly reduced immunosuppressive activity on the proliferation of CD4+ and CD8+ T lymphocytes. Blocking of TLR2 and TLR4 by mAbs and using MDSCs from TLR2KO and TLR4KO mice also reduced the production of suppressive molecules induced by fungal challenge. In vitro, MDSCs from TLR4KO mice presented a reduced suppressive capacity over the proliferation of CD4+ T-cells. Conclusion: We showed that the pathogen recognition receptors (PRRs) Dectin-1, TLR2, and TLR4 contribute to the suppressive activity of MDSCs by inducing the expression of several immunosuppressive molecules such as PD-L1, IL-10, and nitrotyrosine. This is the first demonstration of a complex network of PRRs signaling in the induction of several suppressive molecules by MDSCs and its contribution to the immunosuppressive mechanisms that control immunity and severity of pulmonary PCM.


Assuntos
Antígeno B7-H1 , Modelos Animais de Doenças , Interleucina-10 , Lectinas Tipo C , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides , Paracoccidioidomicose , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Animais , Camundongos , Interleucina-10/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Paracoccidioidomicose/imunologia , Paracoccidioides/imunologia , Tirosina/análogos & derivados , Tirosina/metabolismo , Linfócitos T Reguladores/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Transdução de Sinais , Masculino , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Camundongos Knockout
2.
Elife ; 122024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922679

RESUMO

During tuberculosis (TB), migration of dendritic cells (DCs) from the site of infection to the draining lymph nodes is known to be impaired, hindering the rapid development of protective T-cell-mediated immunity. However, the mechanisms involved in the delayed migration of DCs during TB are still poorly defined. Here, we found that infection of DCs with Mycobacterium tuberculosis (Mtb) triggers HIF1A-mediated aerobic glycolysis in a TLR2-dependent manner, and that this metabolic profile is essential for DC migration. In particular, the lactate dehydrogenase inhibitor oxamate and the HIF1A inhibitor PX-478 abrogated Mtb-induced DC migration in vitro to the lymphoid tissue-specific chemokine CCL21, and in vivo to lymph nodes in mice. Strikingly, we found that although monocytes from TB patients are inherently biased toward glycolysis metabolism, they differentiate into poorly glycolytic and poorly migratory DCs compared with healthy subjects. Taken together, these data suggest that because of their preexisting glycolytic state, circulating monocytes from TB patients are refractory to differentiation into migratory DCs, which may explain the delayed migration of these cells during the disease and opens avenues for host-directed therapies for TB.


Assuntos
Movimento Celular , Células Dendríticas , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia , Monócitos , Mycobacterium tuberculosis , Tuberculose , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Monócitos/metabolismo , Monócitos/imunologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mycobacterium tuberculosis/imunologia , Animais , Tuberculose/imunologia , Tuberculose/metabolismo , Tuberculose/microbiologia , Camundongos , Receptor 2 Toll-Like/metabolismo , Camundongos Endogâmicos C57BL , Feminino
3.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674095

RESUMO

During periodontitis, the extracellular capsule of Porphyromonas gingivalis favors alveolar bone loss by inducing Th1 and Th17 patterns of lymphocyte response in the infected periodontium. Dendritic cells recognize bacterial antigens and present them to T lymphocytes, defining their activation and polarization. Thus, dendritic cells could be involved in the Th1 and Th17 response induced against the P. gingivalis capsule. Herein, monocyte-derived dendritic cells were obtained from healthy individuals and then stimulated with different encapsulated strains of P. gingivalis or two non-encapsulated isogenic mutants. Dendritic cell differentiation and maturation were analyzed by flow cytometry. The mRNA expression levels for distinct Th1-, Th17-, or T-regulatory-related cytokines and transcription factors, as well as TLR2 and TLR4, were assessed by qPCR. In addition, the production of IL-1ß, IL-6, IL-23, and TNF-α was analyzed by ELISA. The encapsulated strains and non-encapsulated mutants of P. gingivalis induced dendritic cell maturation to a similar extent; however, the pattern of dendritic cell response was different. In particular, the encapsulated strains of P. gingivalis induced higher expression of IRF4 and NOTCH2 and production of IL-1ß, IL-6, IL-23, and TNF-α compared with the non-encapsulated mutants, and thus, they showed an increased capacity to trigger Th1 and Th17-type responses in human dendritic cells.


Assuntos
Citocinas , Células Dendríticas , Porphyromonas gingivalis , Células Th17 , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Porphyromonas gingivalis/imunologia , Humanos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia , Células Th17/imunologia , Células Th17/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Citocinas/metabolismo , Diferenciação Celular , Células Th1/imunologia , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Receptor Notch2/genética , Receptor Notch2/metabolismo , Células Cultivadas , Cápsulas Bacterianas/imunologia , Cápsulas Bacterianas/metabolismo , Infecções por Bacteroidaceae/imunologia , Infecções por Bacteroidaceae/microbiologia , Fator de Necrose Tumoral alfa/metabolismo
4.
Front Biosci (Landmark Ed) ; 29(3): 102, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38538263

RESUMO

Herpes simplex virus 1 (HSV-1) or simplexvirus humanalpha 1 is a neurotropic virus that is responsible for orofacial infections in humans. More than 70% of the world's population may have seropositivity for HSV-1, and this virus is a leading cause of sporadic lethal encephalitis in humans. The role of toll-like receptors (TLRs) in defending against HSV-1 infection has been explored, including the consequences of lacking these receptors or other proteins in the TLR pathway. Cell and mouse models have been used to study the importance of these receptors in combating HSV-1, how they relate to the innate immune response, and how they participate in the orchestration of the adaptive immune response. Myeloid differentiation factor 88 (MyD88) is a protein involved in the downstream activation of TLRs and plays a crucial role in this signaling. Mice with functional MyD88 or TLR2 and TLR9 can survive HSV-1 infection. However, they can develop encephalitis and face a 100% mortality rate in a dose-dependent manner when MyD88 or TLR2 plus TLR9 proteins are non-functional. In TLR2/9 knockout mice, an increase in chemokines and decreases in nitric oxide (NO), interferon (IFN) gamma, and interleukin 1 (IL-1) levels in the trigeminal ganglia (TG) have been correlated with mortality.


Assuntos
Encefalite , Herpes Simples , Herpesvirus Humano 1 , Humanos , Animais , Camundongos , Herpesvirus Humano 1/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Gânglio Trigeminal/metabolismo , Receptores Toll-Like/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL
5.
Andrology ; 12(5): 1024-1037, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38497291

RESUMO

BACKGROUND: Region-specific immune environments in the epididymis influence the immune responses to uropathogenic Escherichia coli (UPEC) infection, a relevant cause of epididymitis in men. Toll-like receptors (TLRs) are essential to orchestrate immune responses against bacterial infections. The epididymis displays region-specific inflammatory responses to bacterial-derived TLR agonists, such as lipopolysaccharide (LPS; TLR4 agonist) and lipoteichoic acid (LTA; TLR2/TLR6 agonist), suggesting that TLR-associated signaling pathways could influence the magnitude of inflammatory responses in epididymitis. OBJECTIVES: To investigate the expression and regulation of key genes associated with TLR4 and TLR2/TLR6 signaling pathways during epididymitis induced by UPEC, LPS, and LTA in mice. MATERIAL AND METHODS: Epididymitis was induced in mice using UPEC, ultrapure LPS, or LTA, injected into the interstitial space of the initial segment or the lumen of the vas deferens close to the cauda epididymidis. Samples were harvested after 1, 5, and 10 days for UPEC-treated animals and 6 and 24 h for LPS-/LTA-treated animals. Ex vivo epididymitis was induced by incubating epididymal regions from naive mice with LPS or LTA. RT-qPCR and Western blot assays were conducted. RESULTS: UPEC infection up-regulated Tlr2, Tlr4, and Tlr6 transcripts and their associated signaling molecules Cd14, Ticam1, and Traf6 in the cauda epididymidis but not in the initial segment. In these epididymal regions, LPS and LTA differentially modulated Tlr2, Tlr4, Tlr6, Cd14, Myd88, Ticam1, Traf3, and Traf6 expression levels. NFKB and AP1 activation was required for LPS- and LTA-induced up-regulation of TLR-associated signaling transcripts in the cauda epididymidis and initial segment, respectively. CONCLUSION: The dynamic modulation of TLR4 and TLR2/TLR6 signaling pathways gene expression during epididymitis indicates bacterial-derived antigens elicit an increased tissue sensitivity to combat microbial infection in a spatial manner in the epididymis. Differential activation of TLR-associated signaling pathways may contribute to fine-tuning inflammatory responses along the epididymis.


Assuntos
Epididimite , Lipopolissacarídeos , Transdução de Sinais , Ácidos Teicoicos , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Animais , Masculino , Epididimite/genética , Epididimite/metabolismo , Epididimite/microbiologia , Camundongos , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Ácidos Teicoicos/farmacologia , Escherichia coli Uropatogênica , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/genética , Receptor 6 Toll-Like/genética , Receptor 6 Toll-Like/metabolismo , Epididimo/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Camundongos Endogâmicos C57BL , Doença Aguda
6.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396814

RESUMO

Methadone is an effective and long-lasting analgesic drug that is also used in medication-assisted treatment for people with opioid use disorders. Although there is evidence that methadone activates µ-opioid and Toll-like-4 receptors (TLR-4s), its effects on distinct immune cells, including mast cells (MCs), are not well characterized. MCs express µ-opioid and Toll-like receptors (TLRs) and constitute an important cell lineage involved in allergy and effective innate immunity responses. In the present study, murine bone-marrow-derived mast cells (BMMCs) were treated with methadone to evaluate cell viability by flow cytometry, cell morphology with immunofluorescence and scanning electron microscopy, reactive oxygen species (ROS) production, and intracellular calcium concentration ([Ca2+]i) increase. We found that exposure of BMMCs to 0.5 mM or 1 mM methadone rapidly induced cell death by forming extracellular DNA traps (ETosis). Methadone-induced cell death depended on ROS formation and [Ca2+]i. Using pharmacological approaches and TLR4-defective BMMC cultures, we found that µ-opioid receptors were necessary for both methadone-induced ROS production and intracellular calcium increase. Remarkably, TLR4 receptors were also involved in methadone-induced ROS production as it did not occur in BMMCs obtained from TLR4-deficient mice. Finally, confocal microscopy images showed a significant co-localization of µ-opioid and TLR4 receptors that increased after methadone treatment. Our results suggest that methadone produces MCETosis by a mechanism requiring a novel crosstalk pathway between µ-opioid and TLR4 receptors.


Assuntos
Analgésicos Opioides , Armadilhas Extracelulares , Humanos , Animais , Camundongos , Analgésicos Opioides/farmacologia , Receptor 4 Toll-Like/metabolismo , Metadona/farmacologia , Mastócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Medula Óssea/metabolismo , Cálcio/metabolismo , Armadilhas Extracelulares/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptores Toll-Like/metabolismo
7.
Int Endod J ; 57(3): 328-343, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38236318

RESUMO

AIM: To evaluate the role of regulatory T lymphocytes (Tregs) in the presence or absence of the synthetic ligand Pam3Cys during the progression of periapical lesion in wild-type (WT) and toll-like receptor 2 knockout (TLR2KO) mice. METHODOLOGY: A total of 130 C57BL/6 male WT and TLR2KO mice were allocated into control (n = 5) and experimental (periapical lesion induction) (n = 10) groups. In specific groups (WT+Pam3cys and TLR2KO+Pam3cys), the synthetic ligand Pam3cys was administered intraperitoneally every 7 days, according to the experimental period (14, 21 and 42 days). At the end of those periods, the animals were euthanized, and the mandible and the spleen were submitted to histotechnical processing. Mandible histological sections were analysed by haematoxylin and eosin, TRAP histoenzymology and immunohistochemistry (FOXP3, RANK, RANKL and OPG). Spleen sections were analysed by immunohistochemistry (FOXP3). RESULTS: The inflammatory infiltrate and bone resorption were more intense in the TLR2KO group compared to the WT group. The animals that received the Pam3cys had smaller periapical lesions when compared to the animals that did not receive the ligand (p < .05). TLR2KO animals showed a significant increase in the number of osteoclasts when compared to TLR2KO+Pam3cys group (p < .05). At 21 days, the WT+Pam3cys group had a lower number of osteoclasts when compared to the WT animals (p = .02). FOXP3 expression was more intense in the WT+Pam3cys groups when compared to the WT animals in the 42 days (p = .03). In the spleen analysis, the WT+Pam3cys group also had a higher expression of FOXP3 when compared to the WT animals at 14 and 42 days (p = .02). Concerning RANKL, there was a reduction in staining in the KOTLR2+Pam3cys groups at 21 and 42 days (p = .03) and a higher binding ratio between RANK/RANKL in animals that did not receive the ligand. CONCLUSION: Administration of the Pam3cys increased the proliferation of Tregs, showed by FOXP3 expression and prevented the progression of the periapical lesion in WT mice. On the other hand, in the TLR2KO animals, Treg expression was lower with larger areas of periapical lesions. Finally, systemic administration of the Pam3cys in KO animals was able to limit the deleterious effects of the absence of the TLR2 receptor.


Assuntos
Osteoclastos , Receptor 2 Toll-Like , Camundongos , Masculino , Animais , Osteoclastos/metabolismo , Receptor 2 Toll-Like/metabolismo , Ligantes , Camundongos Endogâmicos C57BL , Ligante RANK/farmacologia , Ligante RANK/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Camundongos Knockout
8.
Int Endod J ; 56(10): 1270-1283, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37461231

RESUMO

AIM: Angiogenesis contributes to the development of apical periodontitis, periodontitis, and other oral pathologies; however, it remains unclear how this process is triggered. The aim was to evaluate whether lipopolysaccharide (LPS) from Porphyromonas endodontalis and Porphyromonas gingivalis induced angiogenesis-related effects in vitro via TLR2 and TLR4. METHODOLOGY: Porphyromonas endodontalis LPS (ATCC 35406 and clinical isolate) was purified with TRIzol, whereas P. gingivalis LPS was obtained commercially. The effects of the different LPS (24 h) in endothelial cell migration were analysed by Transwell assays, following quantification in an optical microscope (40×). The effects of LPS on FAK Y397 phosphorylation were assessed by Western blotting. Angiogenesis in vitro was determined in an endothelial tube formation assay (14 h) in Matrigel in the absence or presence of either LPS. IL-6 and VEGF-A levels were determined in cell supernatants, following 24 h treatment with LPS, and measured in multiplex bead immunoassay. The involvement of TLR2 and TLR4 was assessed with blocking antibodies. The statistical analysis was performed using STATA 12® (StataCorp LP). RESULTS: The results revealed that P. endodontalis LPS, but not P. gingivalis LPS, stimulated endothelial cell migration. Pre-treatment with anti-TLR2 and anti-TLR4 antibodies prevented P. endodontalis LPS-induced cell migration. P. endodontalis LPS promoted FAK phosphorylation on Y397, as observed by an increased p-FAK/FAK ratio. Both P. gingivalis and P. endodontalis LPS (ATCC 35406) induced endothelial tube formation in a TLR-2 and -4-dependent manner, as shown by using blocking antibodies, however, only TLR2 blocking decreased tube formation induced by P. endodontalis (clinical isolate). Moreover, all LPS induced IL-6 and VEGF-A synthesis in endothelial cells. TLR2 and TLR4 were required for IL-6 induction by P. endodontalis LPS (ATCC 35406), while only TLR4 was involved in IL-6 secretion by the other LPS. Finally, VEGF-A synthesis did not require TLR signalling. CONCLUSION: Porphyromonas endodontalis and P. gingivalis LPS induced angiogenesis via TLR2 and TLR4. Collectively, these data contribute to understanding the role of LPS from Porphyromonas spp. in angiogenesis and TLR involvement.


Assuntos
Lipopolissacarídeos , Receptor 2 Toll-Like , Lipopolissacarídeos/farmacologia , Receptor 2 Toll-Like/metabolismo , Porphyromonas gingivalis/metabolismo , Porphyromonas endodontalis/metabolismo , Fator A de Crescimento do Endotélio Vascular , Células Endoteliais/metabolismo , Anticorpos Bloqueadores , Interleucina-6 , Receptor 4 Toll-Like/metabolismo
9.
Sci Rep ; 13(1): 12391, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524886

RESUMO

Paracoccidioidomycosis (PCM) is a systemic mycosis with a high incidence in Latin America. Prior studies have demonstrated the significance of the enzyme Indoleamine 2,3-dioxygenase (IDO-1) in the immune regulation of PCM as well as the vital role of myeloid-derived suppressor cells (MDSCs) in moderating PCM severity. Additionally, Dectin-1 and Toll-Like Receptors (TLRs) signaling in cancer, infection, and autoimmune diseases have been shown to impact MDSC-IDO-1+ activity. To expand our understanding of MDSCs and the role of IDO-1 and pattern recognition receptors (PRRs) signaling in PCM, we generated MDSCs in vitro and administered an IDO-1 inhibitor before challenging the cells with Paracoccidioides brasiliensis yeasts. By co-culturing MDSCs with lymphocytes, we assessed T-cell proliferation to examine the influence of IDO-1 on MDSC activity. Moreover, we utilized specific antibodies and MDSCs from Dectin-1, TLR4, and TLR2 knockout mice to evaluate the effect of these PRRs on IDO-1 production by MDSCs. We confirmed the importance of these in vitro findings by assessing MDSC-IDO-1+ in the lungs of mice following the fungal infection. Taken together, our data show that IDO-1 expression by MDSCs is crucial for the control of T-cell proliferation, and the production of this enzyme is partially dependent on Dectin-1, TLR2, and TLR4 signaling during murine PCM.


Assuntos
Células Supressoras Mieloides , Paracoccidioidomicose , Animais , Camundongos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Camundongos Knockout
10.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37373041

RESUMO

Mast cells (MCs) are involved in several immune-related responses, including those in bacterial infections, autoimmune diseases, inflammatory bowel diseases, and cancer, among others. MCs identify microorganisms by pattern recognition receptors (PRRs), activating a secretory response. Interleukin (IL)-10 has been described as an important modulator of MC responses; however, its role in PRR-mediated activation of MC is not fully understood. We analyzed the activation of TLR2, TLR4, TLR7 and Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) in mucosal-like MCs (MLMCs) and peritoneum-derived cultured MCs (PCMCs) from IL-10-/- and wild-type (WT) mice. IL-10-/- mice showed a reduced expression of TLR4 and NOD2 at week 6 and TLR7 at week 20 in MLMC. In MLMC and PCMC, TLR2 activation induced a reduced secretion of IL-6 and TNFα in IL-10-/- MCs. TLR4- and TLR7-mediated secretion of IL-6 and TNFα was not detected in PCMCs. Finally, no cytokine release was induced by NOD2 ligand, and responses to TLR2 and TLR4 were lower in MCs at 20 weeks. These findings indicate that PRR activation in MCs depends on the phenotype, ligand, age, and IL-10.


Assuntos
Interleucina-10 , Interleucina-6 , Animais , Camundongos , Citocinas/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Ligantes , Mastócitos/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor 7 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA