Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(9): 102356, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35952761

RESUMO

Anthelmintics are used to treat human and veterinary parasitic diseases and to reduce crop and livestock production loss associated with parasitosis. The free-living nematode Caenorhabditis elegans, a model system for anthelmintic drug discovery, has a serotonin (5-HT)-gated chloride channel, MOD-1, which belongs to the Cys-loop receptor family and modulates locomotory and behavioral functions. Since MOD-1 is unique to nematodes, it is emerging as an attractive anthelmintic drug target, but details of MOD-1 function are unclear. Here, we revealed novel aspects of MOD-1 function from the molecular level to the organism level and identified compounds targeting this receptor, which may provide new directions for anthelmintic drug discovery. We used whole-cell current recordings from heterologously expressed MOD-1 to show that tryptamine (Tryp), a weak partial agonist of vertebrate serotonin type 3 (5-HT3) receptors, efficaciously activates MOD-1. A screen for modulators revealed that GABAergic ligands piperazine (PZE) and muscimol reduce 5-HT-elicited currents, thus identifying novel MOD-1 allosteric inhibitors. Next, we performed locomotor activity assays, and we found 5-HT and Tryp rapidly decrease worm motility, which is reversible only at low 5-HT concentrations. Mutants lacking MOD-1 are partially resistant to both drugs, demonstrating its role in locomotion. Acting as an antagonist of MOD-1, we showed PZE reduces the locomotor effects of exogenous 5-HT. Therefore, Tryp- and PZE-derived compounds, acting at MOD-1 through different molecular mechanisms, emerge as promising anthelmintic agents. This study enhances our knowledge of the function and drug selectivity of Cys-loop receptors and postulates MOD-1 as a potential target for anthelmintic therapy.


Assuntos
Anti-Helmínticos , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína , Nematoides , Animais , Anti-Helmínticos/farmacologia , Caenorhabditis elegans/genética , Canais de Cloreto/genética , Humanos , Muscimol/farmacologia , Piperazinas/farmacologia , Serotonina/farmacologia
2.
PLoS Negl Trop Dis ; 13(11): e0007895, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31765374

RESUMO

The anthelmintic treatment of nematode infections remains the pillar of worm control in both human and veterinary medicine. Since control is threatened by the appearance of drug resistant nematodes, there is a need to develop novel compounds, among which phytochemicals constitute potential anthelmintic agents. Caenorhabditis elegans has been pivotal in anthelmintic drug discovery and in revealing mechanisms of drug action and resistance. By using C. elegans, we here revealed the anthelmintic actions of three plant terpenoids -thymol, carvacrol and eugenol- at the behavioral level. Terpenoids produce a rapid paralysis of worms with a potency rank order carvacrol > thymol > eugenol. In addition to their paralyzing activity, they also inhibit egg hatching, which would, in turn, lead to a broader anthelmintic spectrum of activity. To identify drug targets, we performed an in vivo screening of selected strains carrying mutations in receptors involved in worm locomotion for determining resistance to the paralyzing effect of terpenoids. The assays revealed that two Cys-loop receptors with key roles in worm locomotion -Levamisole sensitive nicotinic receptor (L-AChR) and GABA(A) (UNC-49) receptor- are involved in the paralyzing effects of terpenoids. To decipher the mechanism by which terpenoids affect these receptors, we performed electrophysiological studies using a primary culture of C. elegans L1 muscle cells. Whole cell recordings from L1 cells demonstrated that terpenoids decrease macroscopic responses of L-AChR and UNC-49 receptor to their endogenous agonists, thus acting as inhibitors. Single-channel recordings from L-AChR revealed that terpenoids decrease the frequency of opening events, probably by acting as negative allosteric modulators. The fact that terpenoids act at different receptors may have important advantages regarding efficacy and development of resistance. Thus, our findings give support to the use of terpenoids as either an alternative or a complementary anthelmintic strategy to overcome the ever-increasing resistance of parasites to classical anthelmintic drugs.


Assuntos
Anti-Helmínticos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/enzimologia , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/antagonistas & inibidores , Terpenos/farmacologia , Animais , Células Cultivadas , Locomoção/efeitos dos fármacos , Células Musculares/efeitos dos fármacos
3.
J Physiol Paris ; 106(1-2): 23-33, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21995938

RESUMO

Neurotransmitter receptors of the Cys-loop superfamily mediate rapid synaptic transmission throughout the nervous system, and include receptors activated by ACh, GABA, glycine and serotonin. They are involved in physiological processes, including learning and memory, and in neurological disorders, and they are targets for clinically relevant drugs. Cys-loop receptors assemble either from five copies of one type of subunit, giving rise to homomeric receptors, or from several types of subunits, giving rise to heteromeric receptors. Homomeric receptors are invaluable models for probing fundamental relationships between structure and function. Receptors contain a large extracellular domain that carries the binding sites and a transmembrane region that forms the ion pore. How the structural changes elicited by agonist binding are propagated through a distance of 50Å to the ion channel gate is central to understanding receptor function. Depending on the receptor subtype, occupancy of either two, as in the prototype muscle nicotinic receptor, or three binding sites, as in homomeric receptors, is required for full activation. The conformational changes initiated at the binding sites are propagated to the gate through the interface between the extracellular and transmembrane domains. This region forms a network that relays structural changes from the binding site towards the pore, and also contributes to open channel lifetime and rate of desensitization. Thus, this coupling region controls the beginning and duration of a synaptic response. Here we review recent advances in the molecular mechanism by which Cys-loop receptors are activated with particular emphasis on homomeric receptors.


Assuntos
Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/química , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/fisiologia , Ativação do Canal Iônico/fisiologia , Sequência de Aminoácidos , Animais , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/classificação , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Modelos Biológicos , Modelos Moleculares , Neurotransmissores/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia
4.
J Neurosci ; 31(10): 3662-9, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21389221

RESUMO

Each subunit in a homopentameric Cys-loop receptor contains a specialized coupling region positioned between the agonist binding domain and the ion conductive channel. To determine the contribution of each coupling region to the stability of the open channel, we constructed a receptor subunit (α7-5-HT(3A)) with both a disabled coupling region and a reporter mutation that alters unitary conductance, and coexpressed normal and mutant subunits. The resulting receptors show single-channel current amplitudes that are quantized according to the number of reporter mutations per receptor, allowing correlation of the number of intact coupling regions with mean open time. We find that each coupling region contributes an equal increment to the stability of the open channel. However, by altering the numbers and locations of active coupling regions and binding sites, we find that a coupling region in a subunit flanked by inactive binding sites can still stabilize the open channel. We also determine minimal requirements for channel opening regardless of stability and find that channel opening can occur in a receptor with one active coupling region flanked by functional binding sites or with one active binding site flanked by functional coupling regions. The overall findings show that, whereas the agonist binding sites contribute interdependently and asymmetrically to open-channel stability, the coupling regions contribute independently and symmetrically.


Assuntos
Sítios de Ligação/fisiologia , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/metabolismo , Ligação Proteica/fisiologia , Acetilcolina/metabolismo , Animais , Potenciais da Membrana , Camundongos , Técnicas de Patch-Clamp , Conformação Proteica , Receptores Nicotínicos/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Serotonina/metabolismo
5.
Rev Neurol ; 52(3): 173-81, 2011 Feb 01.
Artigo em Espanhol | MEDLINE | ID: mdl-21287494

RESUMO

INTRODUCTION: In the nervous system, rapid chemical neurotransmission is mediated by ionotropic receptors that are activated by ligand binding. Ligand binding to its receptor promotes the selective flow of ions into the cell which changes the electrical potential of the cell membrane. Cys-loop type receptors belong to the ligand-gated ion channel superfamily including the nicotinic acetylcholine receptor, the gamma-aminobutyric acid, glycine, serotonin and zinc. Several studies showed that the activity of these receptors was modified in response to protein kinases A and C activation; the different results, apparently contradictory, could be explained by the involvement of several factors such as the type of subunits that make up these receptors, components of the cytoskeleton and sub-types of kinases and phosphatases present in nerve tissue studied. AIM: To review the effect of protein kinases A and C on the activity of cys-loop receptors. DEVELOPMENT: In this review we describe experiments conducted in different regions where it was determined the effect of these kinases on the function of neurotransmitter receptors mostly distributed in the nervous system. CONCLUSIONS: The cys-loop receptors regulation by protein kinases occurs through the activation of other receptors (cross-talk) that are expressed at different stages of development and nervous system areas.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/metabolismo , Proteína Quinase C/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/química , Humanos , Modelos Biológicos , Neurônios/citologia , Neurônios/metabolismo , Receptores de Neurotransmissores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA