Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Intervalo de ano de publicação
2.
Elife ; 102021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33825680

RESUMO

We examine how a complex transcription network composed of seven 'master' regulators and hundreds of target genes evolved over a span of approximately 70 million years. The network controls biofilm formation in several Candida species, a group of fungi that are present in humans both as constituents of the microbiota and as opportunistic pathogens. Using a variety of approaches, we observed two major types of changes that have occurred in the biofilm network since the four extant species we examined last shared a common ancestor. Master regulator 'substitutions' occurred over relatively long evolutionary times, resulting in different species having overlapping but different sets of master regulators of biofilm formation. Second, massive changes in the connections between the master regulators and their target genes occurred over much shorter timescales. We believe this analysis is the first detailed, empirical description of how a complex transcription network has evolved.


Assuntos
Biofilmes , Candida albicans/fisiologia , Evolução Molecular , Redes Reguladoras de Genes/fisiologia , Candida albicans/genética
3.
Sci Rep ; 10(1): 7227, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350291

RESUMO

The seven-member transient receptor potential canonical genes (TRPC1-7) encode cation channels linked to several human diseases. There is little understanding of the participation of each TRPC in each pathology, considering functional redundancy. Also, most of the inhibitors available are not specific. Thus, we developed mice that lack all of the TRPCs and performed a transcriptome analysis in eight tissues. The aim of this research was to address the impact of the absence of all TRPC channels on gene expression. We obtained a total of 4305 differentially expressed genes (DEGs) in at least one tissue where spleen showed the highest number of DEGs (1371). Just 21 genes were modified in all the tissues. Performing a pathway enrichment analysis, we found that many important signaling pathways were modified in more than one tissue, including PI3K (phosphatidylinositol 3-kinase/protein kinase-B) signaling pathway, cytokine-cytokine receptor interaction, extracellular matrix (ECM)-receptor interaction and circadian rhythms. We describe for the first time the changes at the transcriptome level due to the lack of all TRPC proteins in a mouse model and provide a starting point to understand the function of TRPC channels and their possible roles in pathologies.


Assuntos
Regulação da Expressão Gênica/fisiologia , Redes Reguladoras de Genes/fisiologia , Redes e Vias Metabólicas/fisiologia , RNA-Seq , Transdução de Sinais/fisiologia , Canais de Cátion TRPC , Animais , Camundongos , Camundongos Knockout , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo
4.
Sci Rep ; 9(1): 12715, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481722

RESUMO

Mineral content affects the biological processes underlying beef quality. Muscle mineral concentration depends not only on intake-outtake balance and muscle type, but also on age, environment, breed, and genetic factors. To unveil the genetic factors involved in muscle mineral concentration, we applied a pairwise differential gene expression analysis in groups of Nelore steers genetically divergent for nine different mineral concentrations. Here, based on significant expression differences between contrasting groups, we presented candidate genes for the genetic regulation of mineral concentration in muscle. Functional enrichment and protein-protein interaction network analyses were carried out to search for gene regulatory processes concerning each mineral. The core genetic regulation for all minerals studied, except Zn, seems to rest on interactions between components of the extracellular matrix. Regulation of adipogenesis-related pathways was also significant in our results. Antagonistic patterns of gene expression for fatty acid metabolism-related genes may explain the Cu and Zn antagonistic effect on fatty acid accumulation. Our results shed light on the role of these minerals on cell function.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica/fisiologia , Redes Reguladoras de Genes/fisiologia , Redes e Vias Metabólicas/fisiologia , Minerais/metabolismo , Músculo Esquelético/metabolismo , Animais , Bovinos
5.
BMC Genomics ; 20(1): 658, 2019 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-31419932

RESUMO

BACKGROUND: Inflorescence architecture is denoted by the spatial arrangement of various lateral branches and florets formed on them, which is shaped by a complex of regulators. Unveiling of the regulatory mechanisms underlying inflorescence architecture is pivotal for improving crop yield potential. Quinoa (Chenopodium quinoa Willd), a pseudo cereal originated from Andean region of South America, has been widely recognized as a functional super food due to its excellent nutritional elements. Increasing worldwide consumption of this crop urgently calls for its yield improvement. However, dissection of the regulatory networks underlying quinoa inflorescence patterning is lacking. RESULTS: In this study, we performed RNA-seq analysis on quinoa inflorescence samples collected from six developmental stages, yielding a total of 138.8 GB data. We screened 21,610 differentially expressed genes (DEGs) among all the stages through comparative analysis. Weighted Gene Co-Expression Network Analysis (WGCNA) was performed to categorize the DEGs into ten different modules. Subsequently, we placed emphasis on investigating the modules associated with none branched and branched inflorescence samples. We manually refined the coexpression networks with stringent edge weight cutoffs, and generated core networks using transcription factors and key inflorescence architecture related genes as seed nodes. The core networks were visualized and analyzed by Cytoscape to obtain hub genes in each network. Our finding indicates that the specific occurrence of B3, TALE, WOX, LSH, LFY, GRAS, bHLH, EIL, DOF, G2-like and YABBY family members in early reproductive stage modules, and of TFL, ERF, bZIP, HD-ZIP, C2H2, LBD, NAC, C3H, Nin-like and FAR1 family members in late reproductive stage modules, as well as the several different MADS subfamily members identified in both stages may account for shaping quinoa inflorescence architecture. CONCLUSION: In this study we carried out comparative transcriptome analysis of six different stages quinoa inflorescences, and using WGCNA we obtained the most highly potential central hubs for shaping inflorescence. The data obtained from this study will enhance our understanding of the gene network regulating quinoa inflorescence architecture, as well will supply with valuable genetic resources for high-yield elite breeding in the future.


Assuntos
Chenopodium quinoa/genética , Regulação da Expressão Gênica de Plantas , Inflorescência/genética , Chenopodium quinoa/anatomia & histologia , Chenopodium quinoa/metabolismo , Grão Comestível/genética , Redes Reguladoras de Genes/fisiologia , Inflorescência/anatomia & histologia , Inflorescência/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , RNA-Seq , América do Sul , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Nucleic Acids Res ; 47(13): 6656-6667, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31194874

RESUMO

Transcription factors (TFs) are important drivers of cellular decision-making. When bacteria encounter a change in the environment, TFs alter the expression of a defined set of genes in order to adequately respond. It is commonly assumed that genes regulated by the same TF are involved in the same biological process. Examples of this are methods that rely on coregulation to infer function of not-yet-annotated genes. We have previously shown that only 21% of TFs involved in metabolism regulate functionally homogeneous genes, based on the proximity of the gene products' catalyzed reactions in the metabolic network. Here, we provide more evidence to support the claim that a 1-TF/1-process relationship is not a general property. We show that the observed functional heterogeneity of regulons is not a result of the quality of the annotation of regulatory interactions, nor the absence of protein-metabolite interactions, and that it is also present when function is defined by Gene Ontology terms. Furthermore, the observed functional heterogeneity is different from the one expected by chance, supporting the notion that it is a biological property. To further explore the relationship between transcriptional regulation and metabolism, we analyzed five other types of regulatory groups and identified complex regulons (i.e. genes regulated by the same combination of TFs) as the most functionally homogeneous, and this is supported by coexpression data. Whether higher levels of related functions exist beyond metabolism and current functional annotations remains an open question.


Assuntos
Proteínas de Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes/fisiologia , Regulon/fisiologia , Fatores de Transcrição/fisiologia , Enzimas/genética , Enzimas/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Ontologia Genética , Redes Reguladoras de Genes/genética , Redes e Vias Metabólicas , Regulon/genética
7.
Sci Rep ; 8(1): 16679, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420728

RESUMO

Consensus strategy was proved to be highly efficient in the recognition of gene-disease association. Therefore, the main objective of this study was to apply theoretical approaches to explore genes and communities directly involved in breast cancer (BC) pathogenesis. We evaluated the consensus between 8 prioritization strategies for the early recognition of pathogenic genes. A communality analysis in the protein-protein interaction (PPi) network of previously selected genes was enriched with gene ontology, metabolic pathways, as well as oncogenomics validation with the OncoPPi and DRIVE projects. The consensus genes were rationally filtered to 1842 genes. The communality analysis showed an enrichment of 14 communities specially connected with ERBB, PI3K-AKT, mTOR, FOXO, p53, HIF-1, VEGF, MAPK and prolactin signaling pathways. Genes with highest ranking were TP53, ESR1, BRCA2, BRCA1 and ERBB2. Genes with highest connectivity degree were TP53, AKT1, SRC, CREBBP and EP300. The connectivity degree allowed to establish a significant correlation between the OncoPPi network and our BC integrated network conformed by 51 genes and 62 PPi. In addition, CCND1, RAD51, CDC42, YAP1 and RPA1 were functional genes with significant sensitivity score in BC cell lines. In conclusion, the consensus strategy identifies both well-known pathogenic genes and prioritized genes that need to be further explored.


Assuntos
Algoritmos , Neoplasias da Mama/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiologia , Humanos , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Ligação Proteica , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
8.
PLoS Comput Biol ; 14(5): e1006172, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29775459

RESUMO

Modularity is a widespread property in biological systems. It implies that interactions occur mainly within groups of system elements. A modular arrangement facilitates adjustment of one module without perturbing the rest of the system. Therefore, modularity of developmental mechanisms is a major factor for evolvability, the potential to produce beneficial variation from random genetic change. Understanding how modularity evolves in gene regulatory networks, that create the distinct gene activity patterns that characterize different parts of an organism, is key to developmental and evolutionary biology. One hypothesis for the evolution of modules suggests that interactions between some sets of genes become maladaptive when selection favours additional gene activity patterns. The removal of such interactions by selection would result in the formation of modules. A second hypothesis suggests that modularity evolves in response to sparseness, the scarcity of interactions within a system. Here I simulate the evolution of gene regulatory networks and analyse diverse experimentally sustained networks to study the relationship between sparseness and modularity. My results suggest that sparseness alone is neither sufficient nor necessary to explain modularity in gene regulatory networks. However, sparseness amplifies the effects of forms of selection that, like selection for additional gene activity patterns, already produce an increase in modularity. That evolution of new gene activity patterns is frequent across evolution also supports that it is a major factor in the evolution of modularity. That sparseness is widespread across gene regulatory networks indicates that it may have facilitated the evolution of modules in a wide variety of cases.


Assuntos
Evolução Molecular , Redes Reguladoras de Genes , Modelos Genéticos , Biologia Computacional , Simulação por Computador , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiologia
9.
J Cardiovasc Electrophysiol ; 29(8): 1159-1166, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29676832

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are involved in the pathogenesis of atrial fibrillation (AF), acting on development and progression. Our pilot study investigated the expression of six miRNAs and their miRNA-mRNA interactions in patients with acute new-onset AF, well-controlled AF, and normal sinus rhythm (controls). METHODS AND RESULTS: Plasma of acute new-onset AF patients (n = 5) was collected in the emergency room when patients presented with irregular and fast-atrial fibrillation rhythm. Samples from well-controlled AF (n = 16) and control (n =  15) patients were collected during medical appointments following an ECG. Expression of miR-21, miR-133a, miR-133b, miR-150, miR-328, and miR-499 was analyzed by real-time PCR. Ingenuity Pathway Analysis and the TargetScan database identified the top 30 mRNA targets of these miRNA, seeking the miRNA-mRNA interactions in cardiovascular process. Increased expression of miR-133b (1.4-fold), miR-328 (2.0-fold), and miR-499 (2.3-fold) was observed in patients with acute new-onset AF, compared with well-controlled AF and control patients. Decreased expression of miR-21 was seen in patients with well-controlled AF compared to those with acute new-onset AF and controls (0.6-fold). The miRNA-mRNA interaction demonstrated that SMAD7 and FASLG genes were the targets of miR-21, miR-133b, and miR-499 and were directly related to AF, being involved in apoptosis and fibrosis. CONCLUSION: The miRNAs had different expression profiles dependent on the AF condition, with higher expression in the acute new-onset AF than well-controlled AF. Clinically, this may contribute to an effective assessment for patients, leading to early detection of AF and monitoring to reduce the risk of other serious cardiovascular events.


Assuntos
Fibrilação Atrial/sangue , MicroRNA Circulante/sangue , Redes Reguladoras de Genes/fisiologia , RNA Mensageiro/sangue , Doença Aguda , Adulto , Idoso , Fibrilação Atrial/genética , MicroRNA Circulante/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , RNA Mensageiro/genética
10.
Mol Biosyst ; 13(10): 2024-2035, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28770908

RESUMO

Several developments regarding the analysis of gene co-expression profiles using complex network theory have been reported recently. Such approaches usually start with the construction of an unweighted gene co-expression network, therefore requiring the selection of a suitable threshold defining which pairs of vertices will be connected. We aimed at addressing such an important problem by suggesting and comparing five different approaches for threshold selection. Each of the methods considers a respective biologically-motivated criterion for electing a potentially suitable threshold. A set of 21 microarray experiments from different biological groups was used to investigate the effect of applying the five proposed criteria to several biological situations. For each experiment, we used the Pearson correlation coefficient to measure the relationship between each gene pair, and the resulting weight matrices were thresholded considering several values, generating respective adjacency matrices (co-expression networks). Each of the five proposed criteria was then applied in order to select the respective threshold value. The effects of these thresholding approaches on the topology of the resulting networks were compared by using several measurements, and we verified that, depending on the database, the impact on the topological properties can be large. However, a group of databases was verified to be similarly affected by most of the considered criteria. Based on such results, it can be suggested that when the generated networks present similar measurements, the thresholding method can be chosen with greater freedom. If the generated networks are markedly different, the thresholding method that better suits the interests of each specific research study represents a reasonable choice.


Assuntos
Expressão Gênica/fisiologia , Redes Reguladoras de Genes/fisiologia , Algoritmos , Expressão Gênica/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA