Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 696
Filtrar
1.
PLoS One ; 19(7): e0306862, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38990802

RESUMO

To evaluate the effect of antiseptic soap on single and dual-species biofilms of Candida albicans and Streptococcus mutans on denture base and reline resins. Samples of the resins were distributed into groups (n = 9) according to the prevention or disinfection protocols. In the prevention protocol, samples were immersed in the solutions (Lifebuoy, 0.5% sodium hypochlorite solution and PBS) for 7, 14 and 28 days before the single and dual-species biofilms formation. Overnight denture disinfection was simulated. In the disinfection protocol, samples were immersed in the same solutions during 8 hours after the single and dual-species biofilms formation. Antimicrobial activity was analyzed by counting colony-forming units (CFU/mL) and evaluating cell metabolism. Cell viability and protein components of the biofilm matrix were evaluated using confocal laser scanning microscopy (CLSM). Data were submitted to ANOVA, followed by Tukey's post-test (α = 0.05) or Dunnett's T3 multiple comparisons test. In the prevention protocol, Lifebuoy solution effectively reduced the number of CFU/mL of both species. In addition, the solution decreased the cell metabolism of the microorganisms. Regarding disinfection protocol, the Lifebuoy solution was able of reduce approximately of 2-3 logs for all the biofilms on the denture base and reline resin. Cellular metabolism was also reduced. The images obtained with CLSM corroborate these results. Lifebuoy solution was effective in reducing single and dual-species biofilms on denture base and reline resins.


Assuntos
Resinas Acrílicas , Biofilmes , Candida albicans , Bases de Dentadura , Streptococcus mutans , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/fisiologia , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Bases de Dentadura/microbiologia , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Anti-Infecciosos Locais/farmacologia , Desinfecção/métodos , Humanos
2.
Int J Biol Macromol ; 274(Pt 2): 133482, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38942409

RESUMO

Cellulose modified hydrogels can be produced directly from raw biopolymers in novel cellulose solvents such as NaOH/urea aqueous solution. The effect of cellulose characteristics on the synthesis of a cellulose-graft-(net-poly(acrylamide-co-acrylic acid)) and its performance as water absorbent/methylene blue dye removal material is analyzed. Three cellulose samples, one analytical grade and two obtained from teak wood sawdust with different pretreatments (one alkaline and the other, a novel one known as (gas phase) acid pretreatment) were compared. The starting raw celluloses were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and viscosity in cupri ethylenediamine hydroxide (CED) solution, whereas the chemically modified materials were characterized by SEM, FTIR, and TGA. The pretreatment used influences composition, crystallinity index and degree of polymerization (DP) of the cellulose obtained. The modified material produced with cellulose from alkaline pretreatment showed the highest swelling ratio in water absorption tests at room temperature (12,714 %); in contrast, the one with cellulose from acid pretreatment showed the lowest swelling ratio (7,470 %). However, this difference is not so significative in dye removal tests, where absorption capacity is 139 and 140 mg/g, respectively. The results indicate that cellulose composition, particularly structures with significant hemicellulose and lignin remaining content, has a major effect on the performance of modified materials for water absorption, and degree of polymerization has a major effect on adsorption capacity of methylene blue.


Assuntos
Celulose , Corantes , Lignina , Água , Madeira , Lignina/química , Celulose/química , Água/química , Madeira/química , Corantes/química , Resinas Acrílicas/química , Azul de Metileno/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Purificação da Água/métodos , Poluentes Químicos da Água/química , Acrilamidas/química
3.
Biofouling ; 40(7): 390-401, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945827

RESUMO

This study investigated the antimicrobial activity of surface pre-reacted glass ionomer eluate (S-PRG) against oral microcosm biofilms collected from the oral cavity of patients. Dental biofilm samples were collected from three volunteers to form microcosm biofilms in vitro. Initially, screening tests were carried out to determine the biofilm treatment conditions with S-PRG eluate. The effects of a daily treatment for 5 min using three microcosm biofilms from different patients was then evaluated. For this, biofilms were formed on tooth enamel specimens for 120 h. Biofilms treated with 100% S-PRG for 5 min per day for 5 days showed a reduction in the number of total microorganisms, streptococci and mutans streptococci. SEM images confirmed a reduction in the biofilm after treatment. Furthermore, S-PRG also reduced lactic acid production. It was concluded that S-PRG eluate reduced the microbial load and lactic acid production in oral microcosm biofilms, reinforcing its promising use as a mouthwash agent.


Assuntos
Biofilmes , Boca , Biofilmes/efeitos dos fármacos , Humanos , Boca/microbiologia , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/crescimento & desenvolvimento , Anti-Infecciosos/farmacologia , Antissépticos Bucais/farmacologia , Ácido Láctico/farmacologia , Cimentos de Ionômeros de Vidro/farmacologia , Cimentos de Ionômeros de Vidro/química , Resinas Acrílicas/farmacologia , Resinas Acrílicas/química , Streptococcus/efeitos dos fármacos , Streptococcus/fisiologia , Propriedades de Superfície , Dióxido de Silício
4.
ACS Biomater Sci Eng ; 10(7): 4279-4296, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38870483

RESUMO

After traumatic brain injury, the brain extracellular matrix undergoes structural rearrangement due to changes in matrix composition, activation of proteases, and deposition of chondroitin sulfate proteoglycans by reactive astrocytes to produce the glial scar. These changes lead to a softening of the tissue, where the stiffness of the contusion "core" and peripheral "pericontusional" regions becomes softer than that of healthy tissue. Pioneering mechanotransduction studies have shown that soft substrates upregulate intermediate filament proteins in reactive astrocytes; however, many other aspects of astrocyte biology remain unclear. Here, we developed a platform for the culture of cortical astrocytes using polyacrylamide (PA) gels of varying stiffness (measured in Pascal; Pa) to mimic injury-related regions in order to investigate the effects of tissue stiffness on astrocyte reactivity and morphology. Our results show that substrate stiffness influences astrocyte phenotype; soft 300 Pa substrates led to increased GFAP immunoreactivity, proliferation, and complexity of processes. Intermediate 800 Pa substrates increased Aggrecan+, Brevican+, and Neurocan+ astrocytes. The stiffest 1 kPa substrates led to astrocytes with basal morphologies, similar to a physiological state. These results advance our understanding of astrocyte mechanotransduction processes and provide evidence of how substrates with engineered stiffness can mimic the injury microenvironment.


Assuntos
Resinas Acrílicas , Astrócitos , Mecanotransdução Celular , Astrócitos/metabolismo , Animais , Resinas Acrílicas/química , Células Cultivadas , Proteína Glial Fibrilar Ácida/metabolismo , Ratos , Géis/química , Proliferação de Células , Ratos Sprague-Dawley
5.
J Appl Oral Sci ; 32: e20230397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38695444

RESUMO

Specific products containing natural resources can contribute to the innovation of complete denture hygiene. OBJECTIVE: To conduct an in vitro evaluation of experimental dentifrices containing essential oils of Bowdichia virgilioides Kunth (BvK), Copaifera officinalis (Co), Eucalyptus citriodora (Ec), Melaleuca alternifolia (Ma) and Pinus strobus (Ps) at 1%. METHODOLOGY: The variables evaluated were organoleptic and physicochemical characteristics, abrasiveness (mechanical brushing machine) simulating 2.5 years, and microbial load (Colony Forming Units - CFU/mL), metabolic activity (XTT assay) and cell viability (Live/Dead® BacLight™ kit) of the multispecies biofilm (Streptococcus mutans: Sm, Staphylococcus aureus: Sa, Candida albicans: Ca and Candida glabrata: Cg). Specimens of heat-polymerized acrylic resins (n=256) (n=96 specimens for abrasiveness, n=72 for microbial load count, n=72 for biofilm metabolic activity, n=16 for cell viability and total biofilm quantification) with formed biofilm were divided into eight groups for manual brushing (20 seconds) with a dental brush and distilled water (NC: negative control), Trihydral (PC: positive control), placebo (Pl), BvK, Co, Ec, Ma or Ps. After brushing, the specimens were washed with PBS and immersed in Letheen Broth medium, and the suspension was sown in solid specific medium. The organoleptic characteristics were presented by descriptive analysis. The values of density, pH, consistency and viscosity were presented in a table. The data were analyzed with the Wald test in a generalized linear model, followed by the Kruskal-Wallis test, Dunn's test (mass change) and the Bonferroni test (UFC and XTT). The Wald test in Generalized Estimating Equations and the Bonferroni test were used to analyze cell viability. RESULTS: All dentifrices showed stable organoleptic characteristics and adequate physicochemical properties. CN, Ec, Ps, Pl and PC showed low abrasiveness. There was a significant difference between the groups (p<0.001) for microbial load, metabolic activity and biofilm viability. CONCLUSIONS: It was concluded that the BvK, Ec and Ps dentifrices are useful for cleaning complete dentures, as they have antimicrobial activity against biofilm. The dentifrices containing Bowdichia virgilioides Kunth showed medium abrasiveness and should be used with caution.


Assuntos
Biofilmes , Dentifrícios , Prótese Total , Teste de Materiais , Óleos Voláteis , Biofilmes/efeitos dos fármacos , Dentifrícios/farmacologia , Dentifrícios/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Prótese Total/microbiologia , Fatores de Tempo , Reprodutibilidade dos Testes , Escovação Dentária , Contagem de Colônia Microbiana , Staphylococcus aureus/efeitos dos fármacos , Estatísticas não Paramétricas , Streptococcus mutans/efeitos dos fármacos , Análise de Variância , Viabilidade Microbiana/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Valores de Referência , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia
6.
J Appl Oral Sci ; 32: e20230326, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656049

RESUMO

OBJECTIVE: This study evaluated the surface roughness, wettability and adhesion of multispecies biofilms (Candida albicans, Staphylococcus aureus and Streptococcus mutans) on 3D-printed resins for complete denture bases and teeth compared to conventional resins (heat-polymerized acrylic resin; artificial pre-fabricated teeth). METHODOLOGY: Circular specimens (n=39; 6.0 mm Ø × 2.0 mm) of each group were subjected to roughness (n=30), wettability (n=30) and biofilm adhesion (n=9) tests. Three roughness measurements were taken by laser confocal microscopy and a mean value was calculated. Wettability was evaluated by the contact angle of sessile drop method, considering the mean of the three evaluations per specimen. In parallel, microorganism adhesion to resin surfaces was evaluated using a multispecies biofilm model. Microbial load was evaluated by determining the number of Colony Forming Units (CFU/mL) and by scanning electron microscopy (SEM). Data were subjected to the Wald test in a generalized linear model with multiple comparisons and Bonferroni adjustment, as well as two-way ANOVA (α=5%). RESULTS: The roughness of the conventional base resin (0.01±0.04) was lower than that of the conventional tooth (0.14±0.04) (p=0.023) and 3D-printed base (0.18±0.08) (p<0.001). For wettability, conventional resin (84.20±5.57) showed a higher contact angle than the 3D-printed resin (60.58±6.18) (p<0.001). Higher microbial loads of S. mutans (p=0.023) and S. aureus (p=0.010) were observed on the surface of the conventional resin (S. mutans: 5.48±1.55; S. aureus: 7.01±0.57) compared to the 3D-printed resin (S. mutans: 4.11±1.96; S. aureus: 6.42±0.78). The adhesion of C. albicans was not affected by surface characteristics. The conventional base resin showed less roughness than the conventional dental resin and the printed base resin. CONCLUSION: The 3D-printed resins for base and tooth showed less hydrophobicity and less adhesion of S. mutans and S. aureus than conventional resins.


Assuntos
Resinas Acrílicas , Aderência Bacteriana , Biofilmes , Candida albicans , Bases de Dentadura , Teste de Materiais , Microscopia Confocal , Microscopia Eletrônica de Varredura , Impressão Tridimensional , Staphylococcus aureus , Streptococcus mutans , Propriedades de Superfície , Molhabilidade , Streptococcus mutans/fisiologia , Staphylococcus aureus/fisiologia , Candida albicans/fisiologia , Bases de Dentadura/microbiologia , Resinas Acrílicas/química , Análise de Variância , Reprodutibilidade dos Testes , Prótese Total/microbiologia , Valores de Referência , Contagem de Colônia Microbiana , Modelos Lineares
7.
J Prosthet Dent ; 131(6): 1252.e1-1252.e10, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38553302

RESUMO

STATEMENT OF PROBLEM: The difference in chemical composition between denture base resin and denture teeth requires the development of bonding protocols that increase the union between the materials. PURPOSE: The purpose of this in vitro study was to evaluate the impact of different bonding protocols on the bond between heat-polymerized and 3-dimensionally (3D) printed acrylic resin denture bases and acrylic resin prefabricated and 3D printed artificial teeth. MATERIAL AND METHODS: Four types of artificial teeth were evaluated: prefabricated acrylic resin (VITA MFT) and 3D printed (Cosmos TEMP, PRIZMA 3D Bio Denture, and PrintaX AA Temp) bonded to 20×24-mm cylinders of heat-polymerized (VipiWave) and 3D printed (Cosmos Denture, PRIZMA 3D Bio Denture, and PrintaX BB Base) denture bases. Three bonding protocols were tested (n=20): mechanical retention with perforation + monomer (PT1), mechanical retention with perforation + airborne-particle abrasion with 50-µm aluminum oxide + monomer (PT2), and mechanical retention with perforation + Palabond (PT3). Half of the specimens in each group received 10 000 thermocycles and were then subjected to the bonding test at a crosshead speed of 1 mm/minute. The failure type was analyzed and scanning electron micrographs made. Additionally, surface roughness (Ra) and wettability (degree) were analyzed (n=15). ANOVA was used to evaluate the effect of the bonding protocol, and the Student t test was applied to compare the experimental groups with the control (α=.05). For type of failure, a descriptive analysis was carried out using absolute and relative frequency. The Kruskal-Wallis test was used to evaluate the surface changes (α=.05). RESULTS: Among the protocols, PT3 with in Yller and PT2 with Prizma had the highest bond strengths of the heat-polymerized denture base and 3D printed teeth (P<.05). When comparing the experimental groups with the control, PT3 and PT2 had greater union with the 3D printed denture base + 3D printed teeth (in Yller), with no difference from the heat-polymerized denture base + prefabricated teeth in acrylic resin. The treatment of the 3D printed tooth surfaces affected the surface roughness of Prizma (P<.001) and wettability (P<.001). CONCLUSIONS: To increase the bond between Yller 3D printed denture base + 3D printed teeth, a bonding protocol including mechanical retention with perforation + Palabond or mechanical retention with perforation + airborne-particle abrasion with aluminum oxide + monomer is indicated. For the other materials tested, further bonding protocols need to be investigated.


Assuntos
Resinas Acrílicas , Colagem Dentária , Bases de Dentadura , Impressão Tridimensional , Dente Artificial , Resinas Acrílicas/química , Colagem Dentária/métodos , Técnicas In Vitro , Teste de Materiais , Propriedades de Superfície , Humanos , Materiais Dentários/química , Planejamento de Dentadura
8.
Oper Dent ; 49(1): 76-83, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019216

RESUMO

OBJECTIVE: To evaluate the influence of post-cure heat treatments (PCHT) on Knoop microhardness (KHN) and color change of bis-acryl composite resin (Protemp 4 - 3M ESPE, USA and PrimmaArt - FGM, Brazil) and chemically activated acrylic resins (Dencôr - Clássico, Brazil, and Duralay - Cotia, Brazil). METHODS AND MATERIALS: Specimens (12×1 mm) were prepared for each material (n=10/group). Thirty minutes after curing, the specimens were subjected to PCHT for 10 minutes at 70°, 100°, or 130°C. The control group was kept at room temperature (24°C) for the same amount of time. KHN was analyzed 24 hours after PCHT (n=10). Following Commission Internationale de l'Éclairage (CIE) Delta E 2000 (CIEDE2000 [ΔE00]), color measurements were obtained at three time points: 1. after polymerization; 2. after PCHT; and 3. after 30 days of storage in water, coffee, or red wine. Data for each material were analyzed by one-way analysis of variance (ANOVA) (p<0.05). RESULTS: The PCHT at 130°C produced the highest KHN values. Except for the 70°C groups from Dencôr and Protemp, all PCHTs increased the initial color values (p>0.05). In general, chemically activated acrylic resins showed an increase in color stability when subjected to PCHT (p>0.05). For bis-acryl composite resin, PCHT did not influence color stability (p<0.05). CONCLUSION: Overall, the results showed that PCHT increased the tested materials' color changes and Knoop microhardness. However, except for PCHT at 130°C in Duralay, the color changes remained within acceptable values. The PCHT treatment resulted in better color stability for most of the composite resins studied.


Assuntos
Resinas Compostas , Temperatura Alta , Resinas Compostas/uso terapêutico , Resinas Compostas/química , Resinas Acrílicas/química , Polimetil Metacrilato/química
9.
Dent Mater ; 40(2): 348-358, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142145

RESUMO

OBJECTIVE: The objective was to synthesize halloysite nanotubes loaded with chlorhexidine (HNT/CHX) and evaluate the antimicrobial activity, microhardness, color change, and surface characteristics of an experimental self-curing acrylic resin containing varying concentrations of the synthesized nanomaterial. METHODS: The characterization of HNT/CHX was carried out by calculating incorporation efficiency, morphological and compositional, chemical and thermal evaluations. SAR disks were made containing 0 %, 3 %, 5 %, and 10 % of HNT/CHX. Specimens (n = 3) were immersed in distilled water and spectral measurements were carried out using UV/Vis spectroscopy to evaluate the release of CHX for up to 50 days. The antimicrobial activity of the composite against Candida albicans and Streptococcus mutans was evaluated by disk-diffusion test. Microhardness, color analyses (ΔE), and surface roughness (Ra) (n = 9) were performed before and after 30 days of immersion. Data were analyzed using ANOVA/Bonferroni. {Results.} The incorporation efficiency of CHX into HNT was of 8.15 %. All test groups showed controlled and cumulative CHX release up to 30 or 50 days. Significant antimicrobial activity was verified against both microorganisms (p < 0.001). After the 30-day immersion period, the 10 % HNT/CHX group showed a significant increase in hardness (p < 0.05) and a progressive color change (p < 0.001). At T0, the 5 % and 10 % groups exhibited Ra values similar to the control group (p > 0.05), while at T30, all groups showed similar roughness values (p > 0.05). {Significance.} The modification of a SAR with HNT/CHX provides antimicrobial effect and controlled release of CHX, however, the immediate surface roughness in the 3 % group was compromised when compared to the control group.


Assuntos
Anti-Infecciosos , Nanotubos , Clorexidina/farmacologia , Clorexidina/química , Resinas Acrílicas/química , Argila , Teste de Materiais , Propriedades de Superfície
10.
Dent Med Probl ; 60(4): 657-664, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37966919

RESUMO

BACKGROUND: Nanoparticles (NPs) have gained significant attention in various fields due to their unique properties and potential applications. Polymethyl methacrylate (PMMA) is an acrylic resin widely used in dentistry and medicine. However, the effect of different types of NP fillers on the physical properties of PMMA-based resins has not been thoroughly explored in the literature. OBJECTIVES: The present study aimed to evaluate the effects of 3 different types of NP fillers on the physical properties of an experimental PMMA-based resin as a function of the NP content and concentration. MATERIAL AND METHODS: Ten groups (n = 10) were designed. The specimens were composed of an acrylic resin, silicon dioxide (SiO2), cerium dioxide (CeO2), and titanium dioxide (TiO2) at the following ratios (wt%): group 1 (G1) - control; group 2 (G2) - 0.5% SiO2; group 3 (G3) - 1% SiO2; group 4 (G4) - 3% SiO2; group 5 (G5) - 0.5% CeO2; group 6 (G6) - 1% CeO2; group 7 (G7) - 3% CeO2; group 8 (G8) - 0.5% TiO2; group 9 (G9) - 1% TiO2; and group 10 (G10) - 3% TiO2. Transmission electron microscopy (TEM) was used to assess the quality of NP dispersion. Thermal stability was assessed with thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The effects of the abovementioned NPs on the properties of the resin were evaluated using the Archimedes principle for density, the Vickers hardness (VH) test and the impact strength (IS) test. Data analysis employed the oneand two-way analysis of variance (ANOVA), followed by Duncan's post hoc test at a significance level of 0.05. RESULTS: Transmission electron microscopy showed partial NP dispersion. All types of NPs enhanced the mechanical properties of the acrylic resin except for IS, which was similar to that of the control group. Among the types of NPs, irrespective of the weight percentage, CeO2 showed higher thermal stability and higher IS for 0.5 wt% and 1 wt% as compared to other groups, as well as the highest values of density at 0.5 wt%, 1 wt% and 3 wt%. Titanium oxide at 1 wt% presented a higher VH as compared to other groups. The fracture pattern was the same for all groups. CONCLUSIONS: Incorporating the tested NPs into the acrylic resin resulted in enhanced physical properties, primarily attributed to a lower NP content.


Assuntos
Resinas Acrílicas , Nanopartículas , Humanos , Resinas Acrílicas/química , Polimetil Metacrilato , Dióxido de Silício , Teste de Materiais , Propriedades de Superfície , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA