Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
New Phytol ; 234(4): 1430-1447, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35203109

RESUMO

Phaseolus vulgaris plants from the Mesoamerican centre of genetic diversification establish a preferential and more efficient root nodule symbiosis with sympatric Rhizobium etli strains. This is mediated by changes in host gene expression, which might occur either at the transcriptional or at the post-transcriptional level. However, the implication of small RNA (sRNA)-mediated control of gene expression in strain selectivity has remained elusive. sRNA sequencing was used to identify host microRNAs (miRNAs) differentially regulated in roots at an early stage of the symbiotic interaction, which were further characterized by applying a reverse genetic approach. In silico analysis identified known and new miRNAs that accumulated to a greater extent in the preferential and more efficient interaction. One of them, designated as Pvu-miR5924, participates in the mechanisms that determine the selection of R. etli strains that will colonize the nodules. In addition, the functional analysis of Pvu-miR390b verified that this miRNA is a negative modulator of nodule formation and bacterial infection. This study not only extended the list of miRNAs identified in P. vulgaris but also enabled the identification of miRNAs that play relevant functions in nodule formation, rhizobial infection and the selection of the rhizobial strains that will occupy the nodule.


Assuntos
MicroRNAs , Phaseolus , Rhizobium etli , Rhizobium , MicroRNAs/genética , Phaseolus/genética , Rhizobium/genética , Rhizobium etli/genética , Simbiose/genética
2.
Braz. j. microbiol ; 48(4): 815-821, Oct.-Dec. 2017. graf
Artigo em Inglês | LILACS | ID: biblio-889159

RESUMO

ABSTRACT Strain RT1 was isolated from root nodules of Lens culinaris (a lentil) and characterized as Rhizobium etli (a Gram-negative soil-borne bacterium) by 16S rDNA sequencing and phylogenetic analysis. The signaling molecules produced by R. etli (RT1) were detected and identified by high-performance liquid chromatography coupled with mass spectrometry. The most abundant and biologically active N-acyl homoserine lactone molecules (3-oxo-C8-HSL and 3-OH-C14-HSL) were detected in the ethyl acetate extract of RT1. The biological role of 3-oxo-C8-HSL was evaluated in RT1. Bacterial motility and biofilm formation were affected or modified on increasing concentrations of 3-oxo-C8-HSL. Results confirmed the existence of cell communication in RT1 mediated by 3-oxo-C8-HSL, and positive correlations were found among quorum sensing, motility and biofilm formation in RT1.


Assuntos
4-Butirolactona/análogos & derivados , Biofilmes , Percepção de Quorum , Rhizobium etli/fisiologia , 4-Butirolactona/química , 4-Butirolactona/metabolismo , Lens (Planta)/microbiologia , Raízes de Plantas/microbiologia , Rhizobium etli/química , Rhizobium etli/genética , Rhizobium etli/isolamento & purificação
3.
Braz J Microbiol ; 48(4): 815-821, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28735852

RESUMO

Strain RT1 was isolated from root nodules of Lens culinaris (a lentil) and characterized as Rhizobium etli (a Gram-negative soil-borne bacterium) by 16S rDNA sequencing and phylogenetic analysis. The signaling molecules produced by R. etli (RT1) were detected and identified by high-performance liquid chromatography coupled with mass spectrometry. The most abundant and biologically active N-acyl homoserine lactone molecules (3-oxo-C8-HSL and 3-OH-C14-HSL) were detected in the ethyl acetate extract of RT1. The biological role of 3-oxo-C8-HSL was evaluated in RT1. Bacterial motility and biofilm formation were affected or modified on increasing concentrations of 3-oxo-C8-HSL. Results confirmed the existence of cell communication in RT1 mediated by 3-oxo-C8-HSL, and positive correlations were found among quorum sensing, motility and biofilm formation in RT1.


Assuntos
4-Butirolactona/análogos & derivados , Biofilmes , Percepção de Quorum , Rhizobium etli/fisiologia , 4-Butirolactona/química , 4-Butirolactona/metabolismo , Lens (Planta)/microbiologia , Raízes de Plantas/microbiologia , Rhizobium etli/química , Rhizobium etli/genética , Rhizobium etli/isolamento & purificação
4.
Arch Microbiol ; 199(5): 737-755, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28255691

RESUMO

Flavonoids excreted by legume roots induce the expression of symbiotically essential nodulation (nod) genes in rhizobia, as well as that of specific protein export systems. In the bean microsymbiont Rhizobium etli CE3, nod genes are induced by the flavonoid naringenin. In this study, we identified 693 proteins in the exoproteome of strain CE3 grown in minimal medium with or without naringenin, with 101 and 100 exoproteins being exclusive to these conditions, respectively. Four hundred ninety-two (71%) of the extracellular proteins were found in both cultures. Of the total exoproteins identified, nearly 35% were also present in the intracellular proteome of R. etli bacteroids, 27% had N-terminal signal sequences and a significant number had previously demonstrated or possible novel roles in symbiosis, including bacterial cell surface modification, adhesins, proteins classified as MAMPs (microbe-associated molecular patterns), such as flagellin and EF-Tu, and several normally cytoplasmic proteins as Ndk and glycolytic enzymes, which are known to have extracellular "moonlighting" roles in bacteria that interact with eukaryotic cells. It is noteworthy that the transmembrane ß (1,2) glucan biosynthesis protein NdvB, an essential symbiotic protein in rhizobia, was found in the R. etli naringenin-induced exoproteome. In addition, potential binding sites for two nod-gene transcriptional regulators (NodD) occurred somewhat more frequently in the promoters of genes encoding naringenin-induced exoproteins in comparison to those ofexoproteins found in the control condition.


Assuntos
Proteínas de Bactérias/metabolismo , Flavanonas/farmacologia , Nodulação/genética , Proteoma/metabolismo , Rhizobium etli/genética , Rhizobium etli/metabolismo , Proteínas de Bactérias/genética , Fabaceae/microbiologia , Regulação da Expressão Gênica , Fixação de Nitrogênio/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Proteoma/genética , Simbiose/genética
5.
BMC Microbiol ; 16(1): 133, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27357704

RESUMO

BACKGROUND: The bacterial chromosome may be used to stably maintain foreign DNA in the mega-base range. Integration into the chromosome circumvents issues such as plasmid replication, stability, incompatibility, and copy number variance. The site-specific integrase IntA from Rhizobium etli CFN42 catalyzes a direct recombination between two specific DNA sites: attA and attD (23 bp). This recombination is stable. The aim of this work was to develop a R. etli derivative that may be used as recipient for the integration of foreign DNA in the chromosome, adapting the IntA catalyzed site-specific recombination system. RESULTS: To fulfill our aim, we designed a Rhizobium etli CFN42 derivative, containing a "landing pad" (LP) integrated into the chromosome. The LP sector consists of a green fluorescent protein gene under the control of the lacZ promoter and a spectinomycin resistance gene. Between the lacZ promoter and the GFP gene we inserted an IntA attachment site, which does not affect transcription from the lac promoter. Also, a mobilizable donor vector was generated, containing an attA site and a kanamycin resistance gene; to facilitate insertion of foreign DNA, this vector also contains a multicloning site. There are no promoters flanking the multicloning site. A biparental mating protocol was used to transfer the donor vector into the landing pad strain; insertion of the donor vector into the landing pad sector via IntA-mediated attA X attA recombination thereby interrupted the expression of the green fluorescent protein, generating site-specific cointegrants. Cointegrants were easily recognized by screening for antibiotic sensitivity and lack of GFP expression, and were obtained with an efficiency of 6.18 %. CONCLUSIONS: Integration of foreign DNA in Rhizobium, lacking any similarity with the genome, can be easily achieved by IntA-mediated recombination. This protocol contains the mating and selection procedures for creating and isolating integrants.


Assuntos
Cromossomos Bacterianos , Engenharia Genética/métodos , Integrases/genética , Rhizobium etli/enzimologia , Rhizobium etli/genética , Conjugação Genética , DNA , DNA Nucleotidiltransferases/genética , DNA Nucleotidiltransferases/metabolismo , Replicação do DNA , Escherichia coli/genética , Citometria de Fluxo , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Óperon Lac , Plasmídeos/genética , Regiões Promotoras Genéticas , Recombinação Genética
6.
Arch Microbiol ; 198(9): 847-60, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27226009

RESUMO

Organisms belonging to the genus Rhizobium colonize leguminous plant roots and establish a mutually beneficial symbiosis. Biofilms are structured ecosystems in which microbes are embedded in a matrix of extracellular polymeric substances, and their development is a multistep process. The biofilm formation processes of R. etli CFN42 were analyzed at an early (24-h incubation) and mature stage (72 h), comparing cells in the biofilm with cells remaining in the planktonic stage. A genome-wide microarray analysis identified 498 differentially regulated genes, implying that expression of ~8.3 % of the total R. etli gene content was altered during biofilm formation. In biofilms-attached cells, genes encoding proteins with diverse functions were overexpressed including genes involved in membrane synthesis, transport and chemotaxis, repression of flagellin synthesis, as well as surface components (particularly exopolysaccharides and lipopolysaccharides), in combination with the presence of activators or stimulators of N-acyl-homoserine lactone synthesis This suggests that R. etli is able to sense surrounding environmental conditions and accordingly regulate the transition from planktonic and biofilm growth. In contrast, planktonic cells differentially expressed genes associated with transport, motility (flagellar and twitching) and inhibition of exopolysaccharide synthesis. To our knowledge, this is the first report of nodulation and nitrogen assimilation-related genes being involved in biofilm formation in R. etli. These results contribute to the understanding of the physiological changes involved in biofilm formation by bacteria.


Assuntos
Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Rhizobium etli/genética , Transcriptoma/fisiologia , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , DNA Bacteriano/análise , Análise em Microsséries , RNA Bacteriano/análise , Rhizobium etli/fisiologia
7.
Plant Physiol ; 169(2): 1356-70, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26282238

RESUMO

Establishment of nitrogen-fixing symbiosis requires the recognition of rhizobial molecules to initiate the development of nodules. Using transcriptional profiling of roots inoculated with mutant strains defective in the synthesis of Nod Factor (NF), exopolysaccharide (EPS), or lipopolysaccharide (LPS), we identified 2,606 genes from common bean (Phaseolus vulgaris) that are differentially regulated at early stages of its interaction with Rhizobium etli. Many transcription factors from different families are modulated by NF, EPS, and LPS in different combinations, suggesting that the plant response depends on the integration of multiple signals. Some receptors identified as differentially expressed constitute excellent candidates to participate in signal perception of molecules derived from the bacteria. Several components of the ethylene signal response, a hormone that plays a negative role during early stages of the process, were down-regulated by NF and LPS. In addition, genes encoding proteins involved in small RNA-mediated gene regulation were regulated by these signal molecules, such as Argonaute7, a specific component of the trans-acting short interfering RNA3 pathway, an RNA-dependent RNA polymerase, and an XH/XP domain-containing protein, which is part of the RNA-directed DNA methylation. Interestingly, a number of genes encoding components of the circadian central oscillator were down-regulated by NF and LPS, suggesting that a root circadian clock is adjusted at early stages of symbiosis. Our results reveal a complex interaction of the responses triggered by NF, LPS, and EPS that integrates information of the signals present in the surface or secreted by rhizobia.


Assuntos
Phaseolus/genética , Phaseolus/microbiologia , Rhizobium etli/fisiologia , Transcriptoma , Relógios Circadianos/genética , Regulação da Expressão Gênica de Plantas , Lipopolissacarídeos/metabolismo , Mutação , Phaseolus/metabolismo , Interferência de RNA , Reprodutibilidade dos Testes , Rhizobium etli/genética , Rhizobium etli/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Transdução de Sinais/genética , Fatores de Transcrição/genética
8.
Plasmid ; 70(3): 362-76, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24016735

RESUMO

Rhizobium etli CFN42 has a multipartite genome composed of one chromosome and six large plasmids with low copy numbers, all belonging to the repABC plasmid family. All elements essential for replication and segregation of these plasmids are encoded within the repABC operon. RepA and RepB direct plasmid segregation and are involved in the transcriptional regulation of the operon, and RepC is the initiator protein of the plasmid. Here we show that in addition to RepA (repressor) and RepB (corepressor), full transcriptional repression of the operon located in the symbiotic plasmid (pRetCFN42d) of this strain requires parS, the centromere-like sequence, and the operator sequence. However, the co-expression of RepA and RepB is sufficient to induce the displacement of the parental plasmid. RepA is a Walker-type ATPase that self associates in vivo and in vitro and binds specifically to the operator region in its RepA-ADP form. In contrast, RepA-ATP is capable of binding to non-specific DNA. RepA and RepB form high molecular weight DNA-protein complexes in the presence of ATP and ADP. RepA carrying ATP-pocket motif mutations induce full repression of the repABC operon without the participation of RepB and parS. These mutants specifically bind the operator sequence in their ATP or ADP bound forms. In addition, their expression in trans exerts plasmid incompatibility against the parental plasmid. RepA and RepB expressed in trans induce plasmid incompatibility because of their ability to repress the repABC operon and not only by their capacity to distort the plasmid segregation process.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Óperon , Plasmídeos , Rhizobium etli/genética , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Dados de Sequência Molecular , Mutação , Rhizobium etli/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transcrição Gênica
9.
Biochim Biophys Acta ; 1831(7): 1250-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24046865

RESUMO

The lipid A component of lipopolysaccharide from the nitrogen-fixing plant endosymbiont, Rhizobium etli, is structurally very different from that found in most enteric bacteria. The lipid A from free-living R. etli is structurally heterogeneous and exists as a mixture of species which are either pentaacylated or tetraacylated. In contrast, the lipid A from R. etli bacteroids is reported to consist exclusively of tetraacylated lipid A species. The tetraacylated lipid A species in both cases lack a beta-hydroxymyristoyl chain at the 3-position of lipid A. Here, we show that the lipid A modification enzyme responsible for 3-O deacylation in R. etli is a homolog of the PagL protein originally described in Salmonella enterica sv. typhimurium. In contrast to the PagL proteins described from other species, R. etli PagL displays a calcium dependency. To determine the importance of the lipid A modification catalyzed by PagL, we isolated and characterized a R. etli mutant deficient in the pagL gene. Mass spectrometric analysis confirmed that the mutant strain was exclusively tetraacylated and radiochemical analysis revealed that 3-O deacylase activity was absent in membranes prepared from the mutant. The R. etli mutant was not impaired in its ability to form nitrogen-fixing nodules on Phaseolus vulgaris but it displayed slower nodulation kinetics relative to the wild-type strain. The lipid A modification catalyzed by R. etli PagL, therefore, is not required for nodulation but may play other roles such as protecting bacterial endosymbionts from plant immune responses during infection.


Assuntos
Cálcio/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Lipídeo A/metabolismo , Phaseolus/microbiologia , Rhizobium etli/enzimologia , Rhizobium etli/fisiologia , Sequência de Aminoácidos , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Deleção de Genes , Dados de Sequência Molecular , Mutação , Fixação de Nitrogênio , Phaseolus/fisiologia , Nodulação , Rhizobium etli/química , Rhizobium etli/genética , Salmonella typhimurium/enzimologia , Alinhamento de Sequência , Simbiose
10.
Plasmid ; 69(1): 16-23, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22884755

RESUMO

Recombinant Escherichia coli strains for the production of valuable products are usually generated by transformation with plasmid expression vectors. However, in spite of their usefulness, common problems associated with plasmid use include segregrational and structural instability as well as undesired copy-number effects. A viable alternative to plasmid use is chromosomal gene integration. With the purpose of facilitating the process of stable strain generation, a novel chromosomal integration vector was developed and tested. We describe the construction and use of novel expression vector pLoxGentrc that contains the strong trc promoter (P(trc)), a multiple cloning site, the T1 and T2 rrnB terminator sequences, the lacI(q) gene and the aacC1 gene conferring gentamicin resistance flanked by two loxP sites. As a demonstration of utility, melanin-producing strains of E. coli were generated employing this vector. Melanin is a polymer synthesized by the enzyme tyrosinase using l-tyrosine as substrate. The melA gene encoding a tyrosinase from Rhizobium etli was ligated to pLoxGentrc to generate pLoxGentrcmelA. This plasmid was transformed into E. coli W3110 to generate a melanin-producing strain. A region from this plasmid including P(trc)melA, T1 and T2 rrnB and the aacC1 gene was amplified by PCR employing primers with 45 b regions of homology to the lacZ gene. The PCR product was electroporated into strain W3110 that expressed the λ-Red enzymes. From this experiment, strain W3110P(tr)(c)melA, was obtained having the melA gene inserted in the lacZ locus. Fermentor cultures with strain W3110/pLoxGentrcmelA grown in the presence and absence of gentamicin as well as W3110P(tr)(c)melA without antibiotic revealed that the latter displays high genetic stability as well as the highest melanin titer. Vector pLoxGentrc should be useful during strain generation processes, enabling direct comparison of plasmid and chromosome-based production systems.


Assuntos
Cromossomos Bacterianos/genética , Escherichia coli/genética , Melaninas/metabolismo , Meios de Cultura/metabolismo , Eletroporação , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Fermentação , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Vetores Genéticos/genética , Óperon Lac , Melaninas/genética , Plasmídeos/genética , Regiões Promotoras Genéticas , Rhizobium etli/genética , Transformação Genética , Tirosina/genética , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA