Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
1.
Sci Rep ; 14(1): 18263, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107328

RESUMO

The targeted pollination strategy has shown positive results in directing honey bees to crop flowers offering nectar along with pollen as reward. Kiwifruit is a functionally dioecious species, which relies on bees to transport pollen from staminate to pistillate nectarless flowers. Following the targeted pollination procedures recently validated, we first developed a mimic odor (KM) based on kiwifruit floral volatiles for which bees showed the highest level of generalization to the natural floral scent, although the response towards pistillate flowers was higher than towards staminate flowers. Then, in the field, feeding colonies KM-scented sucrose solution resulted in higher amounts of kiwifruit pollen collected by honey bees compared to control colonies fed unscented sucrose solution. Our results support the hypothesis that olfactory conditioning bees biases their foraging preferences in a nectarless crop, given the higher visitation to target flowers despite having provided the mimic odor paired with a sugar reward.


Assuntos
Flores , Odorantes , Néctar de Plantas , Polinização , Animais , Abelhas/fisiologia , Odorantes/análise , Açúcares/análise , Açúcares/metabolismo , Pólen/química , Comportamento Alimentar/fisiologia , Actinidia , Sacarose/metabolismo , Compostos Orgânicos Voláteis/análise
2.
Sci Rep ; 14(1): 16513, 2024 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019972

RESUMO

The study of diffusion in biological materials is crucial for fields like food science, engineering, and pharmaceuticals. Research that combines numerical and analytical methods is needed to better understand diffusive phenomena across various dimensions and under variable boundary conditions within food matrices. This study aims to bridge this gap by examining the diffusion of substances through biological materials analytically and numerically, calculating diffusivity and conducting surface analysis. The research proposes a process for sweetening Bing-type cherries (Prunus avium) using sucrose/xylitol solutions and a staining technique utilising erythrosine and red gardenia at varying concentrations (119, 238 and 357 ppm) and temperatures (40, 50 and 60 °C). Given the fruit's epidermis resistance, the effective diffusivities of skin were inferior to those in flesh. Temperature and concentration synergise in enhancing diffusion coefficients and dye penetration within the food matrix (357 ppm and 60 °C). Red gardenia displayed significant temperature-dependent variation (p = 0.001), whereas erythrosine dye remained stable by temperature changes (p > 0.05). Gardenia's effective diffusivities in cherry flesh and skin, at 357 ppm and 60 °C, 3.89E-08 and 6.61E-09 m2/s, respectively, significantly differed from those obtained at lower temperatures and concentrations. The results highlight the temperature-concentration impacts on mass transfer calculations for food colouring processes and preservation methodologies.


Assuntos
Temperatura , Difusão , Frutas/química , Frutas/metabolismo , Eritrosina/química , Sacarose/química , Sacarose/metabolismo
3.
Physiol Rep ; 12(13): e16126, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39001594

RESUMO

Molecular mechanisms associated to improvement of metabolic syndrome (MetS) during exercise are not fully elucidated. MetS was induced in 250 g male Wistar rats by 30% sucrose in drinking water. Control rats receiving tap water were controls, both groups received solid standard diet. After 14 weeks, an endurance exercised group, and a sedentary were formed for 8 weeks. The soleus and extensor digitorum longus (EDL) muscles were dissected to determine contractile performance, expression of myosin heavy chain isoforms, PGC1α, AMPKα2, NFATC1, MEF2a, SIX1, EYA1, FOXO1, key metabolic enzymes activities. Exercise mildly improved MetS features. MetS didn't alter the contractile performance of the muscles. Exercise didn't altered expression of PGC1α, NFATC1, SIX1 and EYA1 on MetS EDL whereas NFATC1 increased in soleus. Only citrate synthase was affected by MetS on the EDL and this was partially reverted by exercise. Soleus α-ketoglutarate dehydrogenase activity was increased by exercise but MetS rendered the muscle resistant to this effect. MetS affects mostly the EDL muscle, and endurance exercise only partially reverts this. Soleus muscle seems more resilient to MetS. We highlight the importance of studying both muscles during MetS, and their metabolic remodeling on the development and treatment of MetS by exercise.


Assuntos
Metabolismo Energético , Síndrome Metabólica , Condicionamento Físico Animal , Ratos Wistar , Animais , Masculino , Síndrome Metabólica/metabolismo , Síndrome Metabólica/fisiopatologia , Ratos , Músculo Esquelético/metabolismo , Sacarose/metabolismo , Sacarose/administração & dosagem , Fibras Musculares Esqueléticas/metabolismo , Contração Muscular , Fenótipo
4.
BMC Plant Biol ; 24(1): 570, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38886648

RESUMO

BACKGROUND: Sucrose accumulation in sugarcane is affected by several environmental and genetic factors, with plant moisture being of critical importance for its role in the synthesis and transport of sugars within the cane stalks, affecting the sucrose concentration. In general, rainfall and high soil humidity during the ripening stage promote plant growth, increasing the fresh weight and decreasing the sucrose yield in the humid region of Colombia. Therefore, this study aimed to identify markers associated with sucrose accumulation or production in the humid environment of Colombia through a genome-wide association study (GWAS). RESULTS: Sucrose concentration measurements were taken in 220 genotypes from the Cenicaña's diverse panel at 10 (early maturity) and 13 (normal maturity) months after planting. For early maturity data was collected during plant cane and first ratoon, while at normal maturity it was during plant cane, first, and second ratoon. A total of 137,890 SNPs were selected after sequencing the 220 genotypes through GBS, RADSeq, and whole-genome sequencing. After GWAS analysis, a total of 77 markers were significantly associated with sucrose concentration at both ages, but only 39 were close to candidate genes previously reported for sucrose accumulation and/or production. Among the candidate genes, 18 were highlighted because they were involved in sucrose hydrolysis (SUS6, CIN3, CINV1, CINV2), sugar transport (i.e., MST1, MST2, PLT5, SUT4, ERD6 like), phosphorylation processes (TPS genes), glycolysis (PFP-ALPHA, HXK3, PHI1), and transcription factors (ERF12, ERF112). Similarly, 64 genes were associated with glycosyltransferases, glycosidases, and hormones. CONCLUSIONS: These results provide new insights into the molecular mechanisms involved in sucrose accumulation in sugarcane and contribute with important genomic resources for future research in the humid environments of Colombia. Similarly, the markers identified will be validated for their potential application within Cenicaña's breeding program to assist the development of breeding populations.


Assuntos
Estudo de Associação Genômica Ampla , Umidade , Saccharum , Sacarose , Saccharum/genética , Saccharum/metabolismo , Colômbia , Sacarose/metabolismo , Polimorfismo de Nucleotídeo Único , Genótipo
5.
J Exp Biol ; 227(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38873739

RESUMO

Social insects live in communities where cooperative actions heavily rely on the individual cognitive abilities of their members. In the honey bee (Apis mellifera), the specialization in nectar or pollen collection is associated with variations in gustatory sensitivity, affecting both associative and non-associative learning. Gustatory sensitivity fluctuates as a function of changes in motivation for the specific floral resource throughout the foraging cycle, yet differences in learning between nectar and pollen foragers at the onset of food collection remain unexplored. Here, we examined nectar and pollen foragers captured upon arrival at food sources. We subjected them to an olfactory proboscis extension reflex (PER) conditioning using a 10% sucrose solution paired (S10%+P) or unpaired (S10%) with pollen as a co-reinforcement. For non-associative learning, we habituated foragers with S10%+P or S10%, followed by dishabituation tests with either a 50% sucrose solution paired (S50%+P) or unpaired (S50%) with pollen. Our results indicate that pollen foragers show lower performance than nectar foragers when conditioned with S10%. Interestingly, performance improves to levels similar to those of nectar foragers when pollen is included as a rewarding stimulus (S10%+P). In non-associative learning, pollen foragers tested with S10%+P displayed a lower degree of habituation than nectar foragers and a higher degree of dishabituation when pollen was used as the dishabituating stimulus (S10%+P). Altogether, our results support the idea that pollen and nectar honey bee foragers differ in their responsiveness to rewards, leading to inter-individual differences in learning that contribute to foraging specialization.


Assuntos
Comportamento Alimentar , Aprendizagem , Néctar de Plantas , Pólen , Recompensa , Animais , Abelhas/fisiologia , Pólen/fisiologia , Comportamento Alimentar/fisiologia , Aprendizagem/fisiologia , Flores/fisiologia , Sacarose/metabolismo
6.
Prog Neurobiol ; 237: 102616, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723884

RESUMO

Alterations in cognitive and non-cognitive cerebral functions characterize Alzheimer's disease (AD). Cortical and hippocampal impairments related to extracellular accumulation of Aß in AD animal models have been extensively investigated. However, recent reports have also implicated intracellular Aß in limbic regions, such as the nucleus accumbens (nAc). Accumbal neurons express high levels of inhibitory glycine receptors (GlyRs) that are allosterically modulated by ethanol and have a role in controlling its intake. In the present study, we investigated how GlyRs in the 2xTg mice (AD model) affect nAc functions and ethanol intake behavior. Using transgenic and control aged-matched litter mates, we found that the GlyRα2 subunit was significantly decreased in AD mice (6-month-old). We also examined intracellular calcium dynamics using the fluorescent calcium protein reporter GCaMP in slice photometry. We also found that the calcium signal mediated by GlyRs, but not GABAAR, was also reduced in AD neurons. Additionally, ethanol potentiation was significantly decreased in accumbal neurons in the AD mice. Finally, we performed drinking in the dark (DID) experiments and found that 2xTg mice consumed less ethanol on the last day of DID, in agreement with a lower blood ethanol concentration. 2xTg mice also showed lower sucrose consumption, indicating that overall food reward was altered. In conclusion, the data support the role of GlyRs in nAc neuron excitability and a decreased glycinergic activity in the 2xTg mice that might lead to impairment in reward processing at an early stage of the disease.


Assuntos
Doença de Alzheimer , Núcleo Accumbens , Receptores de Glicina , Camundongos , Doença de Alzheimer/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Glicina/metabolismo , Camundongos Endogâmicos C57BL , Etanol , Camundongos Transgênicos , Cálcio/metabolismo , Recompensa , Sacarose/metabolismo , Atividade Motora , Ansiedade , Neurônios/metabolismo
7.
J Plant Physiol ; 297: 154259, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705079

RESUMO

Management of the plant microbiome may help support food needs for the human population. Bacteria influence plants through enhancing nutrient uptake, metabolism, photosynthesis, biomass production and/or reinforcing immunity. However, information into how these microbes behave under different growth conditions is missing. In this work, we tested how carbon supplements modulate the interaction of Pseudomonas chlororaphis with Arabidopsis thaliana. P. chlororaphis streaks strongly repressed primary root growth, lateral root formation and ultimately, biomass production. Noteworthy, increasing sucrose availability into the media from 0 to 2.4% restored plant growth and promoted lateral root formation in bacterized seedlings. This effect could not be observed by supplementing sucrose to leaves only, indicating that the interaction was strongly modulated by bacterial access to sugar. Total phenazine content decreased in the bacteria grown in high (2.4%) sucrose medium, and conversely, the expression of phzH and pslA genes were diminished by sugar supply. Pyocyanin antagonized the promoting effects of sucrose in lateral root formation and biomass production in inoculated seedlings, indicating that this virulence factor accounts for growth repression during the plant-bacterial interaction. Defence reporter transgenes PR-1::GUS and LOX2::GUS were induced in leaves, while the expression of the auxin-inducible, synthetic reporter gene DR5::GUS was enhanced in the roots of bacterized seedlings at low and high sucrose treatments, which suggests that growth/defence trade-offs in plants are critically modulated by P. chlororaphis. Collectively, our data suggest that bacterial carbon nutrition controls the outcome of the relation with plants.


Assuntos
Arabidopsis , Ácidos Indolacéticos , Fenazinas , Raízes de Plantas , Pseudomonas chlororaphis , Sacarose , Sacarose/metabolismo , Arabidopsis/microbiologia , Arabidopsis/metabolismo , Arabidopsis/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Pseudomonas chlororaphis/metabolismo , Fenazinas/metabolismo , Ácidos Indolacéticos/metabolismo
8.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474615

RESUMO

The valorization of byproducts from the sugarcane industry represents a potential alternative method with a low energy cost for the production of metabolites that are of commercial and industrial interest. The production of exopolysaccharides (EPSs) was carried out using the yeast Suhomyces kilbournensis isolated from agro-industrial sugarcane, and the products and byproducts of this agro-industrial sugarcane were used as carbon sources for their recovery. The effect of pH, temperature, and carbon and nitrogen sources and their concentration in EPS production by submerged fermentation (SmF) was studied in 170 mL glass containers of uniform geometry at 30 °C with an initial pH of 6.5. The resulting EPSs were characterized with Fourier-transform infrared spectroscopy (FT-IR). The results showed that the highest EPS production yields were 4.26 and 44.33 g/L after 6 h of fermentation using sucrose and molasses as carbon sources, respectively. Finally, an FT-IR analysis of the EPSs produced by S. kilbournensis corresponded to levan, corroborating its origin. It is important to mention that this is the first work that reports the production of levan using this yeast. This is relevant because, currently, most studies are focused on the use of recombinant and genetically modified microorganisms; in this scenario, Suhomyces kilbournensis is a native yeast isolated from the sugar production process, giving it a great advantage in the incorporation of carbon sources into their metabolic processes in order to produce levan sucrose, which uses fructose to polymerize levan.


Assuntos
Saccharomycetales , Saccharum , Fermentação , Saccharum/metabolismo , Melaço/análise , Carbono , Espectroscopia de Infravermelho com Transformada de Fourier , Saccharomyces cerevisiae/metabolismo , Frutanos/química , Sacarose/metabolismo
9.
PLoS One ; 19(3): e0299687, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512973

RESUMO

Phytotherapy is an attractive strategy to treat inflammatory bowel disease (IBD) that could be especially useful in developing countries. We previously demonstrated the intestinal anti-inflammatory effect of the total ethereal extract from the Physalis peruviana (Cape gooseberry) calyces in TNBS-induced colitis. This work investigates the therapeutic potential of Peruviose A and B, two sucrose esters that constitute the major metabolites of its calyces. The effect of the Peruvioses A and B mixture on TNBS-induced colitis was studied after 3 (preventive) and 15-days (therapy set-up) of colitis induction in rats. Colonic inflammation was assessed by measuring macroscopic/histologic damage, MPO activity, and biochemical changes. Additionally, LPS-stimulated RAW 264.7 macrophages were treated with test compounds to determine the effect on cytokine imbalance in these cells. Peruvioses mixture ameliorated TNBS-induced colitis in acute (preventive) or established (therapeutic) settings. Although 3-day treatment with compounds did not produce a potent effect, it was sufficient to significantly reduce the extent/severity of tissue damage and the microscopic disturbances. Beneficial effects in the therapy set-up were substantially higher and involved the inhibition of pro-inflammatory enzymes (iNOS, COX-2), cytokines (TNF-α, IL-1ß, and IL-6), as well as epithelial regeneration with restoration of goblet cells numbers and expression of MUC-2 and TFF-3. Consistently, LPS-induced RAW 264.7 cells produced less NO, PGE2, TNF-α, IL-6, and MCP-1. These effects might be related to the inhibition of the NF-κB signaling pathway. Our results suggest that sucrose esters from P. peruviana calyces, non-edible waste from fruit production, might be useful as an alternative IBD treatment.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Physalis , Ribes , Ratos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Ésteres/metabolismo , Sacarose/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Citocinas/metabolismo , Colo/patologia , Doenças Inflamatórias Intestinais/patologia , Ácido Trinitrobenzenossulfônico/toxicidade
10.
J Biosci Bioeng ; 137(6): 420-428, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493064

RESUMO

The aim of this study was to evaluate the physiology of 13 yeast strains by assessing their kinetic parameters under anaerobic conditions. They included Saccharomyces cerevisiae CAT-1 and 12 isolated yeasts from different regions in Brazil. The study aimed to enhance understanding of the metabolism of these strains for more effective applications. Measurements included quantification of sugars, ethanol, glycerol, and organic acids. Various kinetic parameters were analyzed, such as specific substrate utilization rate (qS), maximum specific growth rate (µmax), doubling time, biomass yield, product yield, maximum cell concentration, ethanol productivity (PEth), biomass productivity, and CO2 concentration. S. cerevisiae CAT-1 exhibited the highest values in glucose for µmax (0.35 h-1), qS (3.06 h-1), and PEth (0.69 gEth L-1 h-1). Candida parapsilosis Recol 37 did not fully consume the substrate. In fructose, S. cerevisiae CAT-1 stood out with higher values for µmax (0.25 h-1), qS (2.24 h-1), and PEth (0.60 gEth L-1 h-1). Meyerozyma guilliermondii Recol 09 and C. parapsilosis Recol 37 had prolonged fermentation times and residual substrate. In sucrose, only S. cerevisiae CAT-1, S. cerevisiae BB9, and Pichia kudriavzevii Recol 39 consumed all the substrate, displaying higher PEth (0.72, 0.51, and 0.44 gEth L-1 h-1, respectively) compared to other carbon sources.


Assuntos
Biomassa , Carbono , Fermentação , Frutose , Glucose , Saccharomyces cerevisiae , Sacarose , Frutose/metabolismo , Glucose/metabolismo , Sacarose/metabolismo , Anaerobiose , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Carbono/metabolismo , Etanol/metabolismo , Leveduras/metabolismo , Leveduras/crescimento & desenvolvimento , Leveduras/classificação , Cinética , Glicerol/metabolismo , Brasil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA