Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105700, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307383

RESUMO

Selective retrograde transport from endosomes back to the trans-Golgi network (TGN) is important for maintaining protein homeostasis, recycling receptors, and returning molecules that were transported to the wrong compartments. Two important transmembrane proteins directed to this pathway are the Cation-Independent Mannose-6-phosphate receptor (CI-MPR) and the ATP7B copper transporter. Among CI-MPR functions is the delivery of acid hydrolases to lysosomes, while ATP7B facilitates the transport of cytosolic copper ions into organelles or the extracellular space. Precise subcellular localization of CI-MPR and ATP7B is essential for the proper functioning of these proteins. This study shows that both CI-MPR and ATP7B interact with a variant of the clathrin adaptor 1 (AP-1) complex that contains a specific isoform of the γ-adaptin subunit called γ2. Through synchronized anterograde trafficking and cell-surface uptake assays, we demonstrated that AP-1γ2 is dispensable for ATP7B and CI-MPR exit from the TGN while being critically required for ATP7B and CI-MPR retrieval from endosomes to the TGN. Moreover, AP-1γ2 depletion leads to the retention of endocytosed CI-MPR in endosomes enriched in retromer complex subunits. These data underscore the importance of AP-1γ2 as a key component in the sorting and trafficking machinery of CI-MPR and ATP7B, highlighting its essential role in the transport of proteins from endosomes.


Assuntos
Complexo 1 de Proteínas Adaptadoras , ATPases Transportadoras de Cobre , Endossomos , Transporte Proteico , Receptor IGF Tipo 2 , Rede trans-Golgi , Humanos , Endossomos/metabolismo , Células HeLa , Transporte Proteico/genética , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo , Rede trans-Golgi/genética , Rede trans-Golgi/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Complexo 1 de Proteínas Adaptadoras/genética , Complexo 1 de Proteínas Adaptadoras/metabolismo , Subunidades gama do Complexo de Proteínas Adaptadoras/metabolismo
2.
J Virol ; 94(7)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31915283

RESUMO

The HIV-1 accessory protein Nef downregulates the cell surface expression of major histocompatibility complex class I (MHC-I) molecules to facilitate virus spreading. The Nef-induced downregulation of MHC-I molecules such as HLA-A requires the clathrin adaptor protein 1 (AP-1) complex. The cooperative interaction of Nef, AP-1, and the cytosolic tail (CT) of HLA-A leads to a redirection of HLA-A targeting from the trans-Golgi network (TGN) to lysosomes for degradation. Although the γ-adaptin subunit of AP-1 has two distinct isoforms (γ1 and γ2), which may form two AP-1 complex variants, so far, only the importance of AP-1γ1 in MHC-I downregulation by Nef has been investigated. Here, we report that the AP-1γ2 isoform also participates in this process. We found that AP-1γ2 forms a complex with Nef and HLA-A2_CT and that this interaction depends on the Y320 residue in HLA-A2_CT and Nef expression. Moreover, Nef targets AP-1γ1 and AP-1γ2 to different compartments in T cells, and the depletion of either AP-1 variant impairs the Nef-mediated reduction of total endogenous HLA-A levels and rescues HLA-A levels on the cell surface. Finally, immunofluorescence and immunoelectron microscopy analyses reveal that the depletion of γ2 in T cells compromises both the Nef-mediated retention of HLA-A molecules in the TGN and targeting to multivesicular bodies/late endosomes. Altogether, these results show that in addition to AP-1γ1, Nef also requires the AP-1γ2 variant for efficient MHC-I downregulation.IMPORTANCE HIV-1 Nef mediates evasion of the host immune system by inhibiting MHC-I surface presentation of viral antigens. To achieve this goal, Nef modifies the intracellular trafficking of MHC-I molecules in several ways. Despite being the subject of intense study, the molecular details underlying these modifications are not yet fully understood. Adaptor protein 1 (AP-1) plays an essential role in the Nef-mediated downregulation of MHC-I molecules such as HLA-A in different cell types. However, AP-1 has two functionally distinct variants composed of either γ1 or γ2 subunit isoforms. Because previous studies on the role of AP-1 in MHC-I downregulation by Nef focused on AP-1γ1, an important open question is the participation of AP-1γ2 in this process. Here, we show that AP-1γ2 is also essential for Nef-mediated depletion of surface HLA-A molecules in T cells. Our results indicate that Nef hijacks AP-1γ2 to modify HLA-A intracellular transport, redirecting these proteins to lysosomes for degradation.


Assuntos
Regulação para Baixo , Regulação da Expressão Gênica , Antígeno HLA-A2/metabolismo , Fator de Transcrição AP-1/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Subunidades gama do Complexo de Proteínas Adaptadoras/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Endossomos/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisossomos/metabolismo , Microscopia Imunoeletrônica , Transporte Proteico , Linfócitos T/imunologia , Linfócitos T/virologia , Rede trans-Golgi/metabolismo
3.
J Cell Sci ; 130(2): 429-443, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27909244

RESUMO

The HIV accessory protein Nef is a major determinant of viral pathogenesis that facilitates viral particle release, prevents viral antigen presentation and increases infectivity of new virus particles. These functions of Nef involve its ability to remove specific host proteins from the surface of infected cells, including the CD4 receptor. Nef binds to the adaptor protein 2 (AP-2) and CD4 in clathrin-coated pits, forcing CD4 internalization and its subsequent targeting to lysosomes. Herein, we report that this lysosomal targeting requires a variant of AP-1 containing isoform 2 of γ-adaptin (AP1G2, hereafter γ2). Depletion of the γ2 or µ1A (AP1M1) subunits of AP-1, but not of γ1 (AP1G1), precludes Nef-mediated lysosomal degradation of CD4. In γ2-depleted cells, CD4 internalized by Nef accumulates in early endosomes and this alleviates CD4 removal from the cell surface. Depletion of γ2 also hinders EGFR-EGF-complex targeting to lysosomes, an effect that is not observed upon γ1 depletion. Taken together, our data provide evidence that the presence of γ1 or γ2 subunits delineates two distinct variants of AP-1 complexes, with different functions in protein sorting.


Assuntos
Subunidades gama do Complexo de Proteínas Adaptadoras/metabolismo , Antígenos CD4/metabolismo , Regulação para Baixo , HIV-1/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Lisossomos/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , Transporte Proteico , Proteólise , Técnicas do Sistema de Duplo-Híbrido
4.
Mol Reprod Dev ; 66(2): 202-9, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12950108

RESUMO

The mammalian acrosome is a secretory vesicle of mature sperms that plays an important role in fertilization. Recent evidence had pointed out that some components found at endosomes in somatic cells are associated with the developing acrosome during the early steps of spermiogenesis. Moreover, the mammalian acrosome contains many enzymes found within lysosomes in somatic cells. In this work, we studied the dynamics of some components of the endosome/lysosome system, as a way to understand the complex membrane trafficking circuit established during spermatogenesis. We show that the cation independent-mannose-6-phosphate receptor (CI-MPR) is transiently expressed in the cytoplasm of mid-stage spermatids (steps 5-11). On the other hand, gamma-adaptin, an adaptor molecule of a complex involved in trafficking from the Golgi to lysosomes, was expressed in cytoplasmic vesicles only in pachytene and Cap-phase spermatids (steps 1-5). Our major finding is that the lysosomal protein LAMP-1 is differentially expressed during spermiogenesis. LAMP-1 appears late in spermatogenesis (Acrosome-phase) contrasting with LAMP-2, which is present throughout the complete process. Both proteins appear to be associated with cytoplasmic vesicles and not with the developing acrosome. None of the studied proteins is present in epididymal spermatozoa. Our results suggest that the CI-MPR could be involved in membrane trafficking and/or acrosomal shaping during spermiogenesis.


Assuntos
Antígenos CD/metabolismo , Espermátides/metabolismo , Espermatogênese/genética , Acrossomo/metabolismo , Subunidades gama do Complexo de Proteínas Adaptadoras/genética , Subunidades gama do Complexo de Proteínas Adaptadoras/metabolismo , Animais , Anticorpos Monoclonais , Linhagem Celular , Células Cultivadas , Imunofluorescência , Complexo de Golgi/fisiologia , Proteínas de Membrana Lisossomal , Lisossomos/metabolismo , Masculino , Camundongos , Receptor IGF Tipo 2/metabolismo , Espermatócitos/metabolismo , Espermatogênese/fisiologia , Testículo/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA