Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 229: 238-246, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25443850

RESUMO

Pitanga (Eugenia uniflora L.) is a member of the Myrtaceae family and is of particular interest due to its medicinal properties that are attributed to specialized metabolites with known biological activities. Among these molecules, terpenoids are the most abundant in essential oils that are found in the leaves and represent compounds with potential pharmacological benefits. The terpene diversity observed in Myrtaceae is determined by the activity of different members of the terpene synthase and oxidosqualene cyclase families. Therefore, the aim of this study was to perform a de novo assembly of transcripts from E. uniflora leaves and to annotation to identify the genes potentially involved in the terpenoid biosynthesis pathway and terpene diversity. In total, 72,742 unigenes with a mean length of 1048bp were identified. Of these, 43,631 and 36,289 were annotated with the NCBI non-redundant protein and Swiss-Prot databases, respectively. The gene ontology categorized the sequences into 53 functional groups. A metabolic pathway analysis with KEGG revealed 8,625 unigenes assigned to 141 metabolic pathways and 40 unigenes predicted to be associated with the biosynthesis of terpenoids. Furthermore, we identified four putative full-length terpene synthase genes involved in sesquiterpenes and monoterpenes biosynthesis, and three putative full-length oxidosqualene cyclase genes involved in the triterpenes biosynthesis. The expression of these genes was validated in different E. uniflora tissues.


Assuntos
Vias Biossintéticas/genética , Genes de Plantas , Syzygium/genética , Terpenos/metabolismo , Transcriptoma/genética , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Syzygium/enzimologia
2.
Sci Total Environ ; 407(12): 3740-5, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19321190

RESUMO

The Brazilian sandy coastal plain named restinga is frequently subjected to particulate and gaseous emissions from iron ore factories. These gases may come into contact with atmospheric moisture and produce acid rain. The effects of the acid rain on vegetation, combined with iron excess in the soil, can lead to the disappearance of sensitive species and decrease restinga biodiversity. The effects of iron ore dust deposition and simulated acid rain on photosynthesis and on antioxidant enzymes were investigated in Eugenia uniflora, a representative shrub species of the restinga. This study aimed to determine the possible utility of this species in environmental risk assessment. After the application of iron ore dust as iron solid particulate matter (SPM(Fe)) and simulated acid rain (pH 3.1), the 18-month old plants displayed brown spots and necrosis, typical symptoms of iron toxicity and injuries caused by acid rain, respectively. The acidity of the rain intensified leaf iron accumulation, which reached phytotoxic levels, mainly in plants exposed to iron ore dust. These plants showed the lowest values for net photosynthesis, stomatal conductance, transpiration, chlorophyll a content and electron transport rate through photosystem II (PSII). Catalase and superoxide dismutase activities were decreased by simulated acid rain. Peroxidase activity and membrane injury increased following exposure to acid rain and simultaneous SPM(Fe) application. Eugenia uniflora exhibited impaired photosynthetic and antioxidative metabolism in response to combined iron and acid rain stresses. This species could become a valuable tool in environmental risk assessment in restinga areas near iron ore pelletizing factories. Non-invasive evaluations of visual injuries, photosynthesis and chlorophyll a fluorescence, as well as invasive biochemical analysis could be used as markers.


Assuntos
Chuva Ácida/toxicidade , Ferro/toxicidade , Syzygium/metabolismo , Catalase/análise , Poeira , Monitoramento Ambiental , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/análise , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Medição de Risco , Superóxido Dismutase/análise , Syzygium/efeitos dos fármacos , Syzygium/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA