Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Viruses ; 16(4)2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38675903

RESUMO

Gliomas account for approximately 75-80% of all malignant primary tumors in the central nervous system (CNS), with glioblastoma multiforme (GBM) considered the deadliest. Despite aggressive treatment involving a combination of chemotherapy, radiotherapy, and surgical intervention, patients with GBM have limited survival rates of 2 to 5 years, accompanied by a significant decline in their quality of life. In recent years, novel management strategies have emerged, such as immunotherapy, which includes the development of vaccines or T cells with chimeric antigen receptors, and oncolytic virotherapy (OVT), wherein wild type (WT) or genetically modified viruses are utilized to selectively lyse tumor cells. In vitro and in vivo studies have shown that the Zika virus (ZIKV) can infect glioma cells and induce a robust oncolytic activity. Consequently, interest in exploring this virus as a potential oncolytic virus (OV) for high-grade gliomas has surged. Given that ZIKV actively circulates in Colombia, evaluating its neurotropic and oncolytic capabilities holds considerable national and international importance, as it may emerge as an alternative for treating highly complex gliomas. Therefore, this literature review outlines the generalities of GBM, the factors determining ZIKV's specific tropism for nervous tissue, and its oncolytic capacity. Additionally, we briefly present the progress in preclinical studies supporting the use of ZIKV as an OVT for gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Terapia Viral Oncolítica , Vírus Oncolíticos , Zika virus , Animais , Humanos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/virologia , Glioblastoma/terapia , Glioblastoma/virologia , Glioma/terapia , Glioma/virologia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vírus Oncolíticos/fisiologia , Zika virus/fisiologia , Infecção por Zika virus/virologia
2.
Viruses ; 16(3)2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38543739

RESUMO

The absence of tumor-infiltrating lymphocytes negatively impacts the response to chemotherapy and prognosis in all subtypes of breast cancer. Therapies that stimulate a proinflammatory environment may help improve the response to standard treatments and also to immunotherapies such as checkpoint inhibitors. Newcastle disease virus (NDV) shows oncolytic activity, as well as immune modulating potential, in the treatment of breast cancer in vitro and in vivo; however, its potential to enhance tumor-infiltrating immune cells in breast cancer has yet to be evaluated. Since spontaneous canine mammary tumors represent a translational model of human breast cancer, we conducted this proof-of-concept study, which could provide a rationale for further investigating NDV-MLS as immunotherapy for mammary cancer. Six female companion dogs with spontaneous mammary cancer received a single intravenous and intratumoral injection of oncolytic NDV-MLS. Immune cell infiltrates were evaluated by histology and immunohistochemistry in the stromal, intratumoral, and peritumoral compartments on day 6 after viral administration. Increasing numbers of immune cells were documented post-viral treatment, mainly in the peritumoral compartment, where plasma cells and CD3+ and CD3-/CD79- lymphocytes predominated. Viral administration was well tolerated, with no significant adverse events. These findings support additional research on the use of NDV-MLS immunotherapy for mammary cancer.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Animais , Feminino , Cães , Vírus da Doença de Newcastle/fisiologia , Animais de Estimação , Vírus Oncolíticos/fisiologia , Imunoterapia , Linhagem Celular Tumoral , Neoplasias/terapia
3.
Mol Ther ; 32(2): 440-456, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38213031

RESUMO

Here we introduce a first-in-class microRNA-sensitive oncolytic Zika virus (ZIKV) for virotherapy application against central nervous system (CNS) tumors. The described methodology produced two synthetic modified ZIKV strains that are safe in normal cells, including neural stem cells, while preserving brain tropism and oncolytic effects in tumor cells. The microRNA-sensitive ZIKV introduces genetic modifications in two different virus sites: first, in the established 3'UTR region, and secondly, in the ZIKV protein coding sequence, demonstrating for the first time that the miRNA inhibition systems can be functional outside the UTR RNA sites. The total tumor remission in mice bearing human CNS tumors, including metastatic tumor growth, after intraventricular and systemic modified ZIKV administration, confirms the promise of this virotherapy as a novel agent against brain tumors-highly deadly diseases in urgent need of effective advanced therapies.


Assuntos
Neoplasias do Sistema Nervoso Central , MicroRNAs , Terapia Viral Oncolítica , Vírus Oncolíticos , Infecção por Zika virus , Zika virus , Humanos , Camundongos , Animais , Vírus Oncolíticos/genética , Zika virus/genética , MicroRNAs/genética , Infecção por Zika virus/terapia , Terapia Viral Oncolítica/métodos
4.
Int J Mol Sci ; 24(12)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37373140

RESUMO

More than one million women are diagnosed annually worldwide with a gynecological cancer. Most gynecological cancers are diagnosed at a late stage, either because a lack of symptoms, such as in ovarian cancer or limited accessibility to primary prevention in low-resource countries, such as in cervical cancer. Here, we extend the studies of AR2011, a stroma-targeted and tumor microenvironment responsive oncolytic adenovirus (OAdV), whose replication is driven by a triple hybrid promoter. We show that AR2011 was able to replicate and lyse in vitro fresh explants obtained from human ovarian cancer, uterine cancer, and cervical cancer. AR2011 was also able to strongly inhibit the in vitro growth of ovarian malignant cells obtained from human ascites fluid. The virus could synergize in vitro with cisplatin even on ascites-derived cells obtained from patients heavily pretreated with neoadjuvant chemotherapy. AR2011(h404), a dual transcriptionally targeted derived virus armed with hCD40L and h41BBL under the regulation of the hTERT promoter, showed a strong efficacy in vivo both on subcutaneous and intraperitoneally established human ovarian cancer in nude mice. Preliminary studies in an immunocompetent murine tumor model showed that AR2011(m404) expressing the murine cytokines was able to induce an abscopal effect. The present studies suggest that AR2011(h404) is a likely candidate as a novel medicine for intraperitoneal disseminated ovarian cancer.


Assuntos
Infecções por Adenoviridae , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Ovarianas , Neoplasias do Colo do Útero , Feminino , Humanos , Camundongos , Animais , Adenoviridae/genética , Ascite , Camundongos Nus , Microambiente Tumoral , Linhagem Celular Tumoral , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/tratamento farmacológico , Vírus Oncolíticos/genética , Ensaios Antitumorais Modelo de Xenoenxerto
5.
DNA Cell Biol ; 42(6): 265-266, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37163221
6.
PLoS One ; 18(5): e0285543, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37186587

RESUMO

Despite advances in biomedical research, gastric cancer remains the leading cause of morbidity and mortality worldwide due to the limited efficacy of conventional therapies. In recent decades, oncolytic viruses have emerged as a biological therapeutic alternative to cancer due to their selectivity, effectiveness, and low toxicity. However, clinical trials have shown that developing a virus with selectivity for multiple tumor receptors and the ability to penetrate and diffuse through the tumor microenvironment to reactivate the immune system remains challenging. This study aimed to examine the oncolytic potential of tumor cell-adapted rotavirus Wt1-5 in gastric adenocarcinoma samples. This study focused on determining the propagation capacity of the RV Wt1-5 through the tumor and the importance of the expression of cell surface co-receptors, including integrin ß3, protein disulfide isomerase (PDI), and heat shock proteins (Hsp-90, -70, -60, -40, and Hsc 70), during infection of tumor cells. These proteins were found to be differentially expressed in tumor cells compared to adjacent non-tumor cells. Preincubation of gastric tumor cells with antibodies against these proteins decreased rotavirus infections, validating their importance in the binding and entry of RV Wt1-5 into tumor cells, as previously reported. Upon RV infection, apoptosis was one of the types of death that was observed. This was evidenced by evaluating the expression of CASP-3, -9, PARP, cytochrome C, Bax, Bid, p53, and Bcl-2, as well as observing morphological changes such as chromatin margination, nuclear condensation, and fragmentation. Finally, at 60 h.p.i, histological analysis revealed that oncolysis compromised the entire thickness of the tumor. Therefore, the results suggest that RV Wt1-5 could be a novel therapeutic agent co-adjuvant agent for conventional and targeted therapies in managing GC. Ex vivo infection of the tumor tissue model showed characteristics of an immune response that could be explored in future studies.


Assuntos
Adenocarcinoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Infecções por Rotavirus , Rotavirus , Neoplasias Gástricas , Humanos , Rotavirus/fisiologia , Neoplasias Gástricas/terapia , Vírus Oncolíticos/fisiologia , Adenocarcinoma/terapia , Terapia Viral Oncolítica/métodos , Microambiente Tumoral
7.
Clin Transl Oncol ; 24(9): 1682-1701, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35612653

RESUMO

With the in-depth research and wide application of immunotherapy recently, new therapies based on oncolytic viruses are expected to create new prospects for cancer treatment via eliminating the suppression of the immune system by tumors. Currently, an increasing number of viruses are developed and engineered, and various virus vectors based on effectively stimulating human immune system to kill tumor cells have been approved for clinical treatment. Although the virus can retard the proliferation of tumor cells, the choice of oncolytic viruses in biological cancer therapy is equally critical given their therapeutic efficacy, safety and adverse effects. Moreover, previously known oncolytic viruses have not been systematically classified. Therefore, in this review, we summarized and distinguished the characteristics of several common types of oncolytic viruses: herpes simplex virus, adenovirus, measles virus, Newcastle disease virus, reovirus and respiratory syncytial virus. Subsequently, we outlined that these oncolytic viral vectors have been transformed from preclinical studies in combination with immunotherapy, radiotherapy, chemotherapy, and nanoparticles into clinical therapeutic strategies for various advanced solid malignancies or circulatory system cancers.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Vetores Genéticos , Humanos , Imunoterapia , Neoplasias/terapia , Vírus Oncolíticos/genética
8.
J Thorac Cardiovasc Surg ; 163(4): e313-e328, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33485667

RESUMO

OBJECTIVE: The mainstay of treatment for patients with malignant pleural disease is fluid drainage and systemic therapy. A tumor-specific oncolytic virus or T-cell-activating interleukin-2 immunotherapy may provide an opportunity for local control. We previously developed a vaccinia virus-expressing interleukin-2, an oncolytic virus that mediated tumor regression in preclinical peritoneal tumor models with expansion of tumor-infiltrating lymphocytes. We evaluated the antitumor efficacy and immune modulatory effects of vaccinia virus-expressing interleukin-2 in malignant pleural disease. METHODS: A murine model of malignant pleural disease was established with percutaneous intrapleural deposition of the Lewis lung carcinoma cell line and monitored with bioluminescent imaging. After intrapleural or systemic administration of vaccinia viruses (vaccinia virus yellow fluorescent protein control, vaccinia virus-expressing interleukin-2), systemic anti-programmed cell death-1 antibody, or combination therapy (vaccinia virus-expressing interleukin-2 and anti-programmed cell death-1), tumor mass, immune cell infiltration, T-cell receptor diversity, and survival were assessed. RESULTS: Intrapleural vaccinia virus resulted in significant tumor regression compared with phosphate-buffered saline control (P < .05). Inclusion of the interleukin-2 transgene further increased intratumoral CD8+ T cells (P < .01) and programmed cell death-1 expression on CD8+ tumor-infiltrating lymphocytes (P < .001). Intrapleural vaccinia virus-expressing interleukin-2 was superior to systemic vaccinia virus-expressing interleukin-2, with reduced tumor burden (P < .0001) and improved survival (P < .05). Intrapleural vaccinia virus-expressing interleukin-2 alone or combined treatment with systemic anti-programmed cell death-1 reduced tumor burden (P < .01), improved survival (P < .01), and increased intratumoral αß T-cell receptor diversity (P < .05) compared with systemic anti-programmed cell death-1 monotherapy. CONCLUSIONS: Intrapleural vaccinia virus-expressing interleukin-2 reduced tumor burden and enhanced survival in a murine malignant pleural disease model. Increased CD8+ tumor-infiltrating lymphocytes and αß T-cell receptor diversity are associated with enhanced response. Clinical trials will enable assessment of intrapleural vaccinia virus-expressing interleukin-2 therapy in patients with malignant pleural disease.


Assuntos
Interleucina-2/metabolismo , Neoplasias Pulmonares/imunologia , Terapia Viral Oncolítica , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/metabolismo , Vaccinia virus
9.
Viruses ; 13(10)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34696533

RESUMO

The Zika virus (ZIKV) has shown a promising oncolytic effect against embryonal CNS tumors. However, studies on the effect of different administration routes and the ideal viral load in preclinical models are highly relevant aiming for treatment safety and efficiency. Here, we investigated the effect and effectiveness of different routes of administration, and the number of ZIKVBR injections on tumor tropism, destruction, and side effects. Furthermore, we designed an early-stage human brain organoid co-cultured with embryonal CNS tumors to analyze the ZIKVBR oncolytic effect. We showed that in the mice bearing subcutaneous tumors, the ZIKVBR systemically presented a tropism to the brain. When the tumor was located in the mice's brain, serial systemic injections presented efficient tumor destruction, with no neurological or other organ injury and increased mice survival. In the human cerebral organoid model co-cultured with embryonal CNS tumor cells, ZIKVBR impaired tumor progression. The gene expression of cytokines and chemokines in both models suggested an enhancement of immune cells recruitment and tumor inflammation after the treatment. These results open new perspectives for virotherapy using the ZIKVBR systemic administration route and multiple doses of low virus load for safe and effective treatment of embryonal CNS tumors, an orphan disease that urges new effective therapies.


Assuntos
Neoplasias Encefálicas/terapia , Terapia Viral Oncolítica/métodos , Zika virus/metabolismo , Animais , Encéfalo/virologia , Neoplasias Encefálicas/patologia , Linhagem Celular , Sistema Nervoso Central/efeitos dos fármacos , Técnicas de Cocultura , Modelos Animais de Doenças , Humanos , Imunoterapia/métodos , Injeções Intralesionais/métodos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Vírus Oncolíticos/metabolismo , Organoides , Zika virus/imunologia , Infecção por Zika virus/virologia
10.
J Immunol Res ; 2021: 3412906, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557553

RESUMO

Glioblastoma (GBM) is the most common primary malignant brain tumor with a high mortality rate. The current treatment consists of surgical resection, radiation, and chemotherapy; however, the median survival rate is only 12-18 months despite these alternatives, highlighting the urgent need to find new strategies. The heterogeneity of GBM makes this tumor difficult to treat, and the immunotherapies result in an attractive approach to modulate the antitumoral immune responses favoring the tumor eradication. The immunotherapies for GMB including monoclonal antibodies, checkpoint inhibitors, vaccines, and oncolytic viruses, among others, have shown favorable results alone or as a multimodal treatment. In this review, we summarize and discuss promising immunotherapies for GBM currently under preclinical investigation as well as in clinical trials.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Imunoterapia , Animais , Antígenos de Neoplasias/imunologia , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais , Neoplasias Encefálicas/etiologia , Neoplasias Encefálicas/metabolismo , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/uso terapêutico , Ensaios Clínicos como Assunto , Terapia Combinada , Gerenciamento Clínico , Suscetibilidade a Doenças/imunologia , Glioblastoma/etiologia , Glioblastoma/metabolismo , Humanos , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Modelos Animais , Terapia de Alvo Molecular , Terapia Viral Oncolítica/métodos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA