Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
PLoS One ; 18(9): e0291833, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37756295

RESUMO

Improving plant performance in salinity-prone conditions is a significant challenge in breeding programs. Genomic selection is currently integrated into many plant breeding programs as a tool for increasing selection intensity and precision for complex traits and for reducing breeding cycle length. A rice reference panel (RP) of 241 Oryza sativa L. japonica accessions genotyped with 20,255 SNPs grown in control and mild salinity stress conditions was evaluated at the vegetative stage for eight morphological traits and ion mass fractions (Na and K). Weak to strong genotype-by-condition interactions were found for the traits considered. Cross-validation showed that the predictive ability of genomic prediction methods ranged from 0.25 to 0.64 for multi-environment models with morphological traits and from 0.05 to 0.40 for indices of stress response and ion mass fractions. The performances of a breeding population (BP) comprising 393 japonica accessions were predicted with models trained on the RP. For validation of the predictive performances of the models, a subset of 41 accessions was selected from the BP and phenotyped under the same experimental conditions as the RP. The predictive abilities estimated on this subset ranged from 0.00 to 0.66 for the multi-environment models, depending on the traits, and were strongly correlated with the predictive abilities on cross-validation in the RP in salt condition (r = 0.69). We show here that genomic selection is efficient for predicting the salt stress tolerance of breeding lines. Genomic selection could improve the efficiency of rice breeding strategies for salinity-prone environments.


Assuntos
Oryza , Oryza/genética , Tolerância ao Sal/genética , Melhoramento Vegetal , Genômica , Genótipo
2.
Plant J ; 115(4): 952-966, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37165773

RESUMO

Adaptation to different soil conditions is a well-regulated process vital for plant life. AtHB23 is a homeodomain-leucine zipper I transcription factor (TF) that was previously revealed as crucial for plant survival under salinity conditions. We wondered whether this TF has partners to perform this essential function. Therefore, TF cDNA library screening, yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays were complemented with expression analyses and phenotypic characterization of silenced, mutant, overexpression, and crossed plants in normal and salinity conditions. We revealed that AtHB23, AtPHL1, and AtMYB68 interact with each other, modulating root development and the salinity response. The encoding genes are coexpressed in specific root tissues and at specific developmental stages. In normal conditions, amiR68 silenced plants have fewer initiated roots, the opposite phenotype to that shown by amiR23 plants. AtMYB68 and AtPHL1 play opposite roles in lateral root elongation. Under salinity conditions, AtHB23 plays a crucial positive role in cooperating with AtMYB68, whereas AtPHL1 acts oppositely by obstructing the function of the former, impacting the plant's survival ability. Such interplay supports the complex interaction between these TF in primary and lateral roots. The root adaptation capability is associated with the amyloplast state. We identified new molecular players that through a complex relationship determine Arabidopsis root architecture and survival in salinity conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Raízes de Plantas , Tolerância ao Sal , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tolerância ao Sal/genética
3.
Int J Mol Sci ; 24(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36835560

RESUMO

Teak (Tectona grandis) is one of the most important wood sources, and it is cultivated in tropical regions with a significant market around the world. Abiotic stresses are an increasingly common and worrying environmental phenomenon because it causes production losses in both agriculture and forestry. Plants adapt to these stress conditions by activation or repression of specific genes, and they synthesize numerous stress proteins to maintain their cellular function. For example, APETALA2/ethylene response factor (AP2/ERF) was found to be involved in stress signal transduction. A search in the teak transcriptome database identified an AP2/ERF gene named TgERF1 with a key AP2/ERF domain. We then verified that the TgERF1 expression is rapidly induced by Polyethylene Glycol (PEG), NaCl, and exogenous phytohormone treatments, suggesting a potential role in drought and salt stress tolerance in teak. The full-length coding sequence of TgERF1 gene was isolated from teak young stems, characterized, cloned, and constitutively overexpressed in tobacco plants. In transgenic tobacco plants, the overexpressed TgERF1 protein was localized exclusively in the cell nucleus, as expected for a transcription factor. Furthermore, functional characterization of TgERF1 provided evidence that TgERF1 is a promising candidate gene to be used as selective marker on plant breeding intending to improve plant stress tolerance.


Assuntos
Nicotiana , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Nicotiana/genética , Secas , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Tolerância ao Sal/genética , Proteínas de Plantas/genética , Filogenia
4.
Protoplasma ; 260(2): 467-482, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35788779

RESUMO

Plants adjust their complex molecular, biochemical, and metabolic processes to overcome salt stress. Here, we investigated the proteomic and epigenetic alterations involved in the morphophysiological responses of Pfaffia glomerata, a medicinal plant, to salt stress and the demethylating agent 5-azacytidine (5-azaC). Moreover, we investigated how these changes affected the biosynthesis of 20-hydroxyecdysone (20-E), a pharmacologically important specialized metabolite. Plants were cultivated in vitro for 40 days in Murashige and Skoog medium supplemented with NaCl (50 mM), 5-azaC (25 µM), and NaCl + 5-azaC. Compared with the control (medium only), the treatments reduced growth, photosynthetic rates, and photosynthetic pigment content, with increase in sucrose, total amino acids, and proline contents, but a reduction in starch and protein. Comparative proteomic analysis revealed 282 common differentially accumulated proteins involved in 87 metabolic pathways, most of them related to amino acid and carbohydrate metabolism, and specialized metabolism. 5-azaC and NaCl + 5-azaC lowered global DNA methylation levels and 20-E content, suggesting that 20-E biosynthesis may be regulated by epigenetic mechanisms. Moreover, downregulation of a key protein in jasmonate biosynthesis indicates the fundamental role of this hormone in the 20-E biosynthesis. Taken together, our results highlight possible regulatory proteins and epigenetic changes related to salt stress tolerance and 20-E biosynthesis in P. glomerata, paving the way for future studies of the mechanisms involved in this regulation.


Assuntos
Amaranthaceae , Proteômica , Azacitidina/farmacologia , Cloreto de Sódio/farmacologia , Tolerância ao Sal/genética , Epigênese Genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico
5.
PeerJ ; 10: e13039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35261823

RESUMO

NAC transcription factors play critical roles in xylem secondary development and in regulation of stress response in plants. NAC proteins related to secondary cell wall development were recently identified and characterized in Tectona grandis (teak), one of the hardwood trees of highest economic importance in the world. In this work, we characterized the novel TgNAC01 gene, which is involved in signaling pathways that mediate teak response to stress. Abscisic acid (ABA) increases TgNAC01 expression in teak plants. Therefore, this gene may have a role in signaling events that mediate ABA-dependent osmotic stress responsive in this plant species. Stable expression in tobacco plants showed that the TgNAC01 protein is localized in the cell nucleus. Overexpression of TgNAC01 in two out three independent transgenic tobacco lines resulted in increased growth, leaf senescence and salt tolerance compared to wild type (WT) plants. Moreover, the stress tolerance of transgenic plants was affected by levels of TgNAC01 gene expression. Water potential, gas exchange and chlorophyll fluorescence were used to determine salt stress tolerance. The 35S:TgNAC01-6 line under 300 mM NaCl stress responded with a significant increase in photosynthesis rate, stomatal conductance, transpiration and carboxylation efficiency, but lower water potential compared to WT plants. The data indicate that the TgNAC01 transcription factor acts as a transcriptional activator of the ABA-mediated regulation and induces leaf senescence.


Assuntos
Nicotiana , Tolerância ao Sal , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Nicotiana/genética , Senescência Vegetal , Proteínas de Plantas/genética , Estresse Salino/genética , Ácido Abscísico/farmacologia , Fatores de Transcrição/genética , Água/metabolismo
6.
Plant Genome ; 15(1): e20182, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34964552

RESUMO

Soil salinity is one abiotic stress that threatens agriculture in more than 100 countries. Gliricidia [Gliricidia sepium (Jacq.) Kunth] is a multipurpose tree known for its ability to adapt to a wide range of soils; however, its tolerance limits and responses to salt stress are not yet well understood. In this study, after characterizing the morphophysiological responses of young gliricidia plants to salinity stress, leaf metabolic and transcription profiles were generated and submitted to single and integrated analyses. RNA from leaf samples were subjected to RNA sequencing using an Illumina HiSeq platform and the paired-end strategy. Polar and lipidic fractions from leaf samples were extracted and analyzed on an ultra-high-performance liquid chromatography (UHPLC) coupled with electrospray ionization quadrupole time-of-flight high-resolution mass spectrometry (MS) system. Acquired data were analyzed using the OmicsBox, XCMS Online, MetaboAnalyst, and Omics Fusion platforms. The substrate salinization protocol used allowed the identification of two distinct responses to salt stress: tolerance and adaptation. Single analysis on transcriptome and metabolome data sets led to a group of 5,672 transcripts and 107 metabolites differentially expressed in gliricidia leaves under salt stress. The phenylpropanoid biosynthesis was the most affected pathway, with 15 metabolites and three genes differentially expressed. Results showed that the differentially expressed metabolites and genes from this pathway affect mainly short-term salt stress (STS). The single analysis of the transcriptome identified 12 genes coding for proteins that might play a role in gliricidia response at both STS and long-term salt stress (LTS). Further studies are needed to reveal the mechanisms behind the adaptation response.


Assuntos
Fabaceae , Transcriptoma , Fabaceae/genética , Metabolômica , Salinidade , Estresse Salino/genética , Tolerância ao Sal/genética
7.
Int J Mol Sci ; 22(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802953

RESUMO

Soil salinity is one of the most limiting stresses for crop productivity and quality worldwide. In this sense, jasmonates (JAs) have emerged as phytohormones that play essential roles in mediating plant response to abiotic stresses, including salt stress. Here, we reviewed the mechanisms underlying the activation and response of the JA-biosynthesis and JA-signaling pathways under saline conditions in Arabidopsis and several crops. In this sense, molecular components of JA-signaling such as MYC2 transcription factor and JASMONATE ZIM-DOMAIN (JAZ) repressors are key players for the JA-associated response. Moreover, we review the antagonist and synergistic effects between JA and other hormones such as abscisic acid (ABA). From an applied point of view, several reports have shown that exogenous JA applications increase the antioxidant response in plants to alleviate salt stress. Finally, we discuss the latest advances in genomic techniques for the improvement of crop tolerance to salt stress with a focus on jasmonates.


Assuntos
Adaptação Fisiológica/genética , Ciclopentanos/metabolismo , Genômica , Oxilipinas/metabolismo , Plantas/genética , Estresse Salino/genética , Tolerância ao Sal/genética
8.
Sci Rep ; 11(1): 7098, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782506

RESUMO

Hexokinases (HXKs) and fructokinases (FRKs) are the only two families of enzymes in plants that have been identified as able to phosphorylate Glucose (Glc) and Fructose (Fru). Glc can only be phosphorylated in plants by HXKs, while Fru can be phosphorylated by either HXKs or FRKs. The various subcellular localizations of HXKs in plants indicate that they are involved in diverse functions, including anther dehiscence and pollen germination, stomatal closure in response to sugar levels, stomatal aperture and reducing transpiration. Its association with modulating programmed cell death, and responses to oxidative stress and pathogen infection (abiotic and biotic stresses) also have been reported. To extend our understanding about the function of HXK-like genes in the response of Prunus rootstocks to abiotic stress, we performed a detailed bioinformatic and functional analysis of hexokinase 3-like genes (HXK3s) from two Prunus rootstock genotypes, 'M.2624' (Prunus cerasifera Ehrh × P. munsoniana W.Wight & Hedrick) and 'M.F12/1' (P. avium L.), which are tolerant and sensitive to hypoxia stress, respectively. A previous large-scale transcriptome sequencing of roots of these rootstocks, showed that this HXK3-like gene that was highly induced in the tolerant genotype under hypoxia conditions. In silico analysis of gene promoters from M.2624 and M.F12/1 genotypes revealed regulatory elements that could explain differential transcriptional profiles of HXK3 genes. Subcellular localization was determinates by both bioinformatic prediction and expression of their protein fused to the green fluorescent protein (GFP) in protoplasts and transgenic plants of Arabidopsis. Both approaches showed that they are expressed in plastids. Metabolomics analysis of Arabidopsis plants ectopically expressing Prunus HXK3 genes revealed that content of several metabolites including phosphorylated sugars (G6P), starch and some metabolites associated with the TCA cycle were affected. These transgenic Arabidopsis plants showed improved tolerance to salt and drought stress under growth chamber conditions. Our results suggest that Prunus HXK3 is a potential candidate for enhancing tolerance to salt and drought stresses in stone fruit trees and other plants.


Assuntos
Arabidopsis/fisiologia , Hexoquinase/genética , Prunus/genética , Tolerância ao Sal/genética , Sequência de Aminoácidos , Arabidopsis/genética , Hexoquinase/química , Hipóxia/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Homologia de Sequência de Aminoácidos
9.
Int J Mol Sci ; 22(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503994

RESUMO

With the notable exception of angiosperms, all phototrophs contain different sets of flavodiiron proteins that help to relieve the excess of excitation energy on the photosynthetic electron transport chain during adverse environmental conditions, presumably by reducing oxygen directly to water. Among them, the Flv2-Flv4 dimer is only found in ß-cyanobacteria and induced by high light, supporting a role in stress protection. The possibility of a similar protective function in plants was assayed by expressing Synechocystis Flv2-Flv4 in chloroplasts of tobacco and Arabidopsis. Flv-expressing plants exhibited increased tolerance toward high irradiation, salinity, oxidants, and drought. Stress tolerance was reflected by better growth, preservation of photosynthetic activity, and membrane integrity. Metabolic profiling under drought showed enhanced accumulation of soluble sugars and amino acids in transgenic Arabidopsis and a remarkable shift of sucrose into starch, in line with metabolic responses of drought-tolerant genotypes. Our results indicate that the Flv2-Flv4 complex retains its stress protection activities when expressed in chloroplasts of angiosperm species by acting as an additional electron sink. The flv2-flv4 genes constitute a novel biotechnological tool to generate plants with increased tolerance to agronomically relevant stress conditions that represent a significant productivity constraint.


Assuntos
Adaptação Biológica , Arabidopsis/fisiologia , Cloroplastos/genética , Nicotiana/fisiologia , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Secas , Regulação da Expressão Gênica de Plantas , Estresse Oxidativo , Fenótipo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Fenômenos Fisiológicos Vegetais , Plantas Geneticamente Modificadas , Plastídeos/genética , Tolerância ao Sal/genética
10.
Biol Res ; 53(1): 37, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32847618

RESUMO

BACKGROUND: Soil salinity causes huge economic losses to agriculture productivity in arid and semiarid areas worldwide. The affected plants face disturbances in osmotic adjustment, nutrient transport, ionic toxicity and reduced photosynthesis. Conventional breeding approaches produce little success in combating various stresses in plants. However, non-conventional approaches, such as in vitro tissue culturing, produce genetic variability in the development of salt-tolerant plants, particularly in woody trees. RESULTS: Embryogenic callus cultures of the date palm cultivar Khalas were subjected to various salt levels ranging from 0 to 300 mM in eight subcultures. The regenerants obtained from the salt-treated cultures were regenerated and evaluated using the same concentration of NaCl with which the calli were treated. All the salt-adapted (SA) regenerants showed improved growth characteristics, physiological performance, ion concentrations and K+/Na+ ratios than the salt non-adapted (SNA) regenerants and the control. Regression between the leaf Na+ concentration and net photosynthesis revealed an inverse nonlinear correlation in the SNA regenerants. Leaf K+ contents and stomatal conductance showed a strong linear relationship in SA regenerants compared with the inverse linear correlation, and a very poor coefficient of determination in SNA regenerants. The genetic fidelity of the selected SA regenerants was also tested using 36 random amplified polymorphic DNA (RAPD) primers, of which 26 produced scorable bands. The primers generated 1-10 bands, with an average of 5.4 bands per RAPD primer; there was no variation between SA regenerants and the negative control. CONCLUSION: This is the first report of the variants generated from salt-stressed cultures and their potential adaptation to salinity in date palm cv. Khalas. The massive production of salt stress-adapted date palm plants may be much easier using the salt adaptation approach. Such plants can perform better during exposure to salt stress compared to the non-treated date palm plants.


Assuntos
Aclimatação , Phoeniceae/genética , Tolerância ao Sal/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Salinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA