Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Molecules ; 29(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38792145

RESUMO

The Cupressaceae family includes species considered to be medicinal. Their essential oil is used for headaches, colds, cough, and bronchitis. Cedar trees like Chamaecyparis lawsoniana (C. lawsoniana) are commonly found in urban areas. We investigated whether C. lawsoniana exerts some of its effects by modifying airway smooth muscle (ASM) contractility. The leaves of C. lawsoniana (363 g) were pulverized mechanically, and extracts were obtained by successive maceration 1:10 (w:w) with methanol/CHCl3. Guinea pig tracheal rings were contracted with KCl, tetraethylammonium (TEA), histamine (HIS), or carbachol (Cch) in organ baths. In the Cch experiments, tissues were pre-incubated with D-600, an antagonist of L-type voltage-dependent Ca2+ channels (L-VDCC) before the addition of C. lawsoniana. Interestingly, at different concentrations, C. lawsoniana diminished the tracheal contractions induced by KCl, TEA, HIS, and Cch. In ASM cells, C. lawsoniana significantly diminished L-type Ca2+ currents. ASM cells stimulated with Cch produced a transient Ca2+ peak followed by a sustained plateau maintained by L-VDCC and store-operated Ca2+ channels (SOCC). C. lawsoniana almost abolished this last response. These results show that C. lawsoniana, and its active metabolite quercetin, relax the ASM by inhibiting the L-VDCC and SOCC; further studies must be performed to obtain the complete set of metabolites of the extract and study at length their pharmacological properties.


Assuntos
Cálcio , Chamaecyparis , Contração Muscular , Músculo Liso , Extratos Vegetais , Quercetina , Traqueia , Animais , Cobaias , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Contração Muscular/efeitos dos fármacos , Quercetina/farmacologia , Quercetina/química , Traqueia/efeitos dos fármacos , Traqueia/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Chamaecyparis/química , Cálcio/metabolismo , Masculino , Bloqueadores dos Canais de Cálcio/farmacologia , Histamina/metabolismo , Canais de Cálcio Tipo L/metabolismo , Folhas de Planta/química
2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731872

RESUMO

Numerous studies suggest the involvement of adenosine-5'-triphosphate (ATP) and similar nucleotides in the pathophysiology of asthma. Androgens, such as testosterone (TES), are proposed to alleviate asthma symptoms in young men. ATP and uridine-5'-triphosphate (UTP) relax the airway smooth muscle (ASM) via purinergic P2Y2 and P2Y4 receptors and K+ channel opening. We previously demonstrated that TES increased the expression of voltage-dependent K+ (KV) channels in ASM. This study investigates how TES may potentiate ASM relaxation induced by ATP and UTP. Tracheal tissues treated with or without TES (control group) from young male guinea pigs were used. In organ baths, tracheas exposed to TES (40 nM for 48 h) showed enhanced ATP- and UTP-evoked relaxation. Tetraethylammonium, a K+ channel blocker, annulled this effect. Patch-clamp experiments in tracheal myocytes showed that TES also increased ATP- and UTP-induced K+ currents, and this effect was abolished with flutamide (an androgen receptor antagonist). KV channels were involved in this phenomenon, which was demonstrated by inhibition with 4-aminopyridine. RB2 (an antagonist of almost all P2Y receptors except for P2Y2), as well as N-ethylmaleimide and SQ 22,536 (inhibitors of G proteins and adenylyl cyclase, respectively), attenuated the enhancement of the K+ currents induced by TES. Immunofluorescence and immunohistochemistry studies revealed that TES did not modify the expression of P2Y4 receptors or COX-1 and COX-2, while we have demonstrated that this androgen augmented the expression of KV1.2 and KV1.5 channels in ASM. Thus, TES leads to the upregulation of P2Y4 signaling and KV channels in guinea pig ASM, enhancing ATP and UTP relaxation responses, which likely limits the severity of bronchospasm in young males.


Assuntos
Trifosfato de Adenosina , Adenilil Ciclases , Relaxamento Muscular , Músculo Liso , Testosterona , Traqueia , Uridina Trifosfato , Animais , Uridina Trifosfato/farmacologia , Uridina Trifosfato/metabolismo , Cobaias , Relaxamento Muscular/efeitos dos fármacos , Masculino , Trifosfato de Adenosina/metabolismo , Traqueia/metabolismo , Traqueia/efeitos dos fármacos , Testosterona/farmacologia , Testosterona/metabolismo , Adenilil Ciclases/metabolismo , Músculo Liso/metabolismo , Músculo Liso/efeitos dos fármacos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptores Purinérgicos P2/metabolismo
3.
Cells Tissues Organs ; 212(6): 535-545, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35640555

RESUMO

Decellularized scaffolds applied in tissue engineering offer improvements, supplying the elevated necessity for organs and tissues for replacement. However, obtaining a functional trachea for autotransplantation or allotransplantation is tricky due to the organ anatomical and structural complexity. Most tracheal decellularization protocols are lengthy, expensive, and could damage the tracheal extracellular matrix (ECM) architecture and functionality. Here, we aimed to evaluate the effectiveness of 3 different decellularization protocols combined with chemical and physical methods to obtain acellular canine tracheal scaffolds. Six adult dog tracheas were incised (tracheal segments) resulting in 28 rings for control tissue and 84 rings for decellularization (5-7 mm thick). Subsequently, decellularized tracheal scaffolds were microscopically/macroscopically characterized by histological analysis (Hematoxylin-Eosin, Masson's trichrome, Picrosirius red, Alcian blue, and Safranin O), immunohistochemistry for ECM components, scanning electron microscopy, and genomic DNA quantification. After decellularization, the tracheal tissue revealed reduced genomic DNA, and maintenance of ECM components preserved (structural proteins, adhesive glycoproteins, glycosaminoglycans and proteoglycans), suggesting ECM integrity and functionality. Comparatively, the combined ionic detergent with high vacuum pressure decellularization protocol revealed superior genomic DNA decrease (13.5 ng/mg) and improvement on glycosaminoglycans and proteoglycans preservation regarding the other decellularized trachea scaffolds and native tissue. Our results indicate that the 3 chemical/physical protocols reduce the decellularization time without ECM proteins damage. Notwithstanding, the use of ionic detergent under vacuum pressure was able to generate an innovative strategy to obtain acellular canine tracheal scaffolds with the highest levels of adhesive proteins that support its potentiality for recellularization and future tissue engineering application.


Assuntos
Alicerces Teciduais , Traqueia , Cães , Animais , Alicerces Teciduais/química , Traqueia/metabolismo , Detergentes/farmacologia , Detergentes/análise , Detergentes/metabolismo , Vácuo , Engenharia Tecidual/métodos , Matriz Extracelular/metabolismo , Proteoglicanas/metabolismo , Glicosaminoglicanos/metabolismo , DNA/metabolismo
4.
Physiol Genomics ; 54(7): 273-282, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35658672

RESUMO

Ion channels are potentially exploitable as pharmacological targets to treat asthma. This study evaluated the role of KCa3.1 channels, encoded by Kcnn4, in regulating the gene expression of mouse airway epithelium and the development of asthma traits. We used the ovalbumin (OVA) challenge as an asthma model in wild-type and Kcnn4-/- mice, performed histological analysis, and measured serum IgE to evaluate asthma traits. We analyzed gene expression of isolated epithelial cells of trachea or bronchi using mRNA sequencing and gene ontology and performed Ussing chamber experiments in mouse trachea to evaluate anion secretion. Gene expression of epithelial cells from mouse airways differed between trachea and bronchi, indicating regional differences in the inflammatory and transepithelial transport properties of proximal and distal airways. We found that Kcnn4 silencing reduced mast cell numbers, mucus, and collagen in the airways, and reduced the amount of epithelial anion secretion in the OVA-challenged animals. In addition, gene expression was differentially modified in the trachea and bronchi, with Kcnn4 genetic silencing significantly altering the expression of genes involved in the TNF pathway, supporting the potential of KCa3.1 as a therapeutic target for asthma.


Assuntos
Asma , Traqueia , Animais , Asma/genética , Asma/metabolismo , Asma/patologia , Brônquios/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/metabolismo , Traqueia/metabolismo , Traqueia/patologia
5.
J Invest Surg ; 35(7): 1551-1561, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35649711

RESUMO

BACKGROUND: Tracheal stenosis (TS) is a complication of prolonged intubation, tracheotomy, and tracheal surgery that compromises the vascular supply. Animal models are essential for studying its pathophysiology and the effect of interventions. OBJECTIVE: To establish a TS model in rats secondary to tracheal autotransplantation with a graft submerged in bleomycin (Atx-Bleo). Additionally, to evaluate the clinical and histological changes, as well as the expression of newly formed collagen (NFC), isoforms of transforming growth factor beta (TGFß), fibronectin (FN), elastin (ELN), integrin ß1 (ITGß1), and matrix metalloproteinase 1 (MMP1) in TS. METHODS: Twenty Wistar rats were divided into three groups: group I (n = 20) control; group II (n = 10) end-to-end anastomosis of the trachea (tracheoplasty); and group III (n = 10) Atx-Bleo. The animals were evaluated clinically, tomographically, macroscopically, morphometrically, and microscopically. NFC deposition, and the expression of profibrotic and antifibrotic proteins were evaluated in tracheal scars. RESULTS: All animals survived the surgical procedure and the study period. Compared with the other study groups, the Atx-Bleo group developed TS and fibrosis, exhibited higher expression of NFC, TGFß1, TGFß2, FN, ELN, and ITGß1, and mild expression of TGFß3 and MMP1 (p < 0.005; analysis of variance, Dunnett and Tukey tests). CONCLUSION: Atx-Bleo in TS model rats produces tomographic and histological changes, and induces the upregulation of profibrotic proteins (TGFß1, TGFß2, collagen, FN, ELN, ITGß1) and downregulation of antifibrotic proteins (TGFß3, MMP1). Therefore, this model may be used to test new pharmacological treatments for reversing or preventing TS, and conduct basic studies regarding its pathophysiology.


Assuntos
Estenose Traqueal , Animais , Colágeno/metabolismo , Matriz Extracelular , Proteínas da Matriz Extracelular/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Ratos , Ratos Wistar , Traqueia/metabolismo , Traqueia/patologia , Traqueia/cirurgia , Estenose Traqueal/etiologia , Estenose Traqueal/patologia , Estenose Traqueal/cirurgia , Transplante Autólogo
6.
Eur J Pharmacol ; 912: 174591, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34710369

RESUMO

Dry cough has been reported in patients receiving statin therapy. However, the underlying mechanism or other possible alterations in the airways induced by statins remain unknown. Thus, the aim of this study was to evaluate whether simvastatin promotes alterations in airways, such as bronchoconstriction and plasma extravasation, as well as the mechanism involved in these events. Using methods to detect alterations in airway resistance and plasma extravasation, we demonstrated that simvastatin [20 mg/kg, intravenous (i.v.)] caused plasma extravasation in the trachea (79.8 + 14.8 µg/g/tissue) and bronchi (73.3 + 8.8 µg/g/tissue) of rats, compared to the vehicle (34.2 + 3.6 µg/g/tissue and 29.3 + 5.3 µg/g/tissue, respectively). NG-nitro-L-arginine methyl ester (L-NAME, 30 mg/kg, intraperitoneal), a nitric oxide (NO) synthase inhibitor, Icatibant [HOE 140, 10 nmol/50 µl, intratracheal (i.t.)], a bradykinin B2 antagonist, and capsazepine (100 nmol/50 µl, i.t.), a TRPV1 antagonist, attenuated simvastatin-induced plasma extravasation. Simvastatin (5, 10 and 20 mg/kg) did not cause bronchoconstriction per se, but exacerbated the bronchoconstrictive response to bradykinin (30 nmol/kg, i.v.), a B2 agonist (0.7 + 0.1 ml/H2O), or capsaicin (30 nmol/kg, i.v.), a TRPV1 agonist (0.8 + 0.1 ml/H2O), compared to the vehicle (0.1 + 0.04 ml/H2O and 0.04 + 0.01 ml/H2O, respectively). The bronchoconstriction elicited by bradykinin (100 nmol/kg, i.v.) in simvastatin non-treated rats was inhibited by L-NAME. The exacerbation of bronchoconstriction induced by bradykinin or capsaicin in simvastatin-treated rats was inhibited by L-NAME, HOE 140 or capsazepine. These results suggest that treatment with simvastatin promotes the release of bradykinin, which, via B2 receptors, releases NO that can then activate the TRPV1 to promote plasma extravasation and bronchoconstriction.


Assuntos
Brônquios/efeitos dos fármacos , Óxido Nítrico/metabolismo , Receptor B2 da Bradicinina/metabolismo , Sinvastatina/efeitos adversos , Canais de Cátion TRPV/metabolismo , Traqueia/efeitos dos fármacos , Administração Intravenosa , Resistência das Vias Respiratórias/efeitos dos fármacos , Animais , Bradicinina/administração & dosagem , Bradicinina/análogos & derivados , Bradicinina/farmacologia , Antagonistas de Receptor B2 da Bradicinina/administração & dosagem , Antagonistas de Receptor B2 da Bradicinina/farmacologia , Brônquios/metabolismo , Broncoconstrição/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Capsaicina/administração & dosagem , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Injeções Intraperitoneais , Masculino , NG-Nitroarginina Metil Éster/administração & dosagem , NG-Nitroarginina Metil Éster/farmacologia , Ratos Wistar , Sinvastatina/administração & dosagem , Canais de Cátion TRPV/antagonistas & inibidores , Traqueia/metabolismo
7.
Biochem Pharmacol ; 192: 114713, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34331910

RESUMO

In the respiratory tract, intracellular 3',5'-cAMP mediates smooth muscle relaxation triggered by the ß2-adrenoceptor/Gs protein/adenylyl cyclase axis. More recently, we have shown that ß2-adrenoceptor agonists also increase extracellular 3',5'-cAMP levels in isolated rat trachea, which leads to contraction of airway smooth muscle. In many other tissues, extracellular 3',5'-cAMP is metabolized by ectoenzymes to extracellular adenosine, a catabolic pathway that has never been addressed in airways. In order to evaluate the possible extracellular degradation of 3',5'-cAMP into 5'-AMP and adenosine in the airways, isolated rat tracheas were incubated with exogenous 3',5'-cAMP and the amount of 5'-AMP, adenosine and inosine (adenosine metabolite) produced was evaluated using ultraperformance liquid chromatography-tandem mass spectrometry. Incubation of tracheal tissue with 3',5'-cAMP induced a time- and concentration-dependent increase in 5'-AMP, adenosine and inosine in the medium. Importantly, IBMX (non-selective phosphodiesterase (PDE) inhibitor) and DPSPX (selective ecto-PDE inhibitor) reduced the extracellular conversion of 3',5'-cAMP to 5'-AMP. In addition, incubation of 3',5'-cAMP in the presence of AMPCP (inhibitor of ecto-5'-nucleotidase) increased extracellular levels of 5'-AMP while drastically reducing extracellular levels of adenosine and inosine. These results indicate that airways express an extracellular enzymatic system (ecto-phosphodiesterase, ecto-5'-nucleotidase and adenosine deaminase) that sequentially converts 3',5'-cAMP into 5'-AMP, adenosine and inosine. The observation that extracellular 3',5'-cAMP is a source of interstitial adenosine supports the idea that the extrusion and extracellular metabolism of 3',5'-cAMP has a role in respiratory physiology and pathophysiology.


Assuntos
Adenosina/metabolismo , AMP Cíclico/metabolismo , Líquido Extracelular/metabolismo , Músculo Liso/metabolismo , Traqueia/metabolismo , Animais , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar
8.
J Ethnopharmacol ; 253: 112643, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32035218

RESUMO

ETHNOPHARMACOLOGICAL IMPORTANCE: Achillea millefolium L. (Asteraceae) is used for the treatment of respiratory diseases, diabetes, and hypertension. AIM: to explore its tracheal relaxant properties and clarify its functional mechanism of action on smooth muscle cells, which allow us to propose it as a potential anti-asthmatic drug. MATERIAL AND METHODS: organic and hydro-alcoholic extracts from A. millefolium were obtained by macerations, then their relaxing effect on ex vivo isolated rat trachea rings was determined. Most active extract (hexanic extract, EHAm) was studied to determine its functional mechanism of action using synergic, antagonist and inhibitor agents related with the contraction/relaxation process of the smooth muscle. Also, EHAm was subjected to bio-guided fractionation by open-column chromatography (on silica gel) using cyclohexane-EtOAc (80:20) in an isocratic way to isolate main bioactive compounds. RESULTS: organic and hydro-alcoholic extracts showed relaxant effect in a concentration-response dependent manner, being EHAm the most active. The functional mechanism of action indicates that EHAm induced a non-competitive antagonism to the muscarinic receptors ; in addition, the NO/cGMP pathway is involved in the relaxation process of the tracheal smooth muscle. However, the most important mechanism of action showed by EHAm was related with the calcium channel blockade influx into the smooth muscle cells. On the other hand, epimeric sesquiterpene lactones leucodin (1) and achillin (2) were isolated and purified, which are responsible for the observed smooth muscle relaxant activity of the extract. CONCLUSION: hexanic extract of A. millefollium induced a significant relaxant effect on tracheal rat rings by calcium channel blockade and NO release.


Assuntos
Achillea/química , Bloqueadores dos Canais de Cálcio/farmacologia , Relaxamento Muscular/efeitos dos fármacos , Extratos Vegetais/farmacologia , Traqueia/efeitos dos fármacos , Animais , Antiasmáticos/administração & dosagem , Antiasmáticos/isolamento & purificação , Antiasmáticos/farmacologia , Bloqueadores dos Canais de Cálcio/administração & dosagem , Bloqueadores dos Canais de Cálcio/isolamento & purificação , Relação Dose-Resposta a Droga , Masculino , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Extratos Vegetais/administração & dosagem , Ratos , Ratos Wistar , Traqueia/metabolismo
9.
Pulm Pharmacol Ther ; 65: 102004, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33610768

RESUMO

Angiotensin-converting enzyme inhibitors (ACEis) may cause adverse airway events, such as cough and angioedema, due to a reduction in bradykinin breakdown and consequent activation of bradykinin type 2 receptor (B2 receptor). Recent studies have shown that bradykinin can also sensitize pro-inflammatory receptors such as the transient receptor potential ankyrin 1 (TRPA1) and vanilloid 4 (TRPV4), which are implicated in several inflammatory airway diseases. Based on these considerations, the aim of this study was to understand the role of TRPA1 and TRPV4 channels in the bronchoconstrictive response and plasma extravasation in the trachea of rats pretreated with captopril. Using methods to detect alterations in airway resistance and plasma extravasation, we found that intravenous (i.v.) administration of bradykinin (0.03-0.3 µmol/kg, B2 receptor agonist), allyl isothiocyanate (100-1000 µmol/kg, TRPA1 agonist) or GSK1016790A (0.01-0.1 µmol/kg, TRPV4 agonist), but not des-arg9-bradykinin (DABK; 100-300 µmol/kg, B1 receptor agonist), induced bronchoconstriction in anaesthetized rats. In doses that did not cause significant bronchoconstriction, bradykinin (0.03 µmol/kg) or allyl isothiocyanate (100 µmol/kg), but not GSK1016790A (0.01 µmol/kg) or DABK (300 µmol/kg) induced an increased bronchoconstrictive response in rats pretreated with captopril (2.5 mg/kg, i.v.). On the other hand, in rats pretreated with captopril (5 mg/kg, i.v.), an increased bronchoconstrictive response to GSK1016790A (0.01 µmol/kg) was observed. The bronchoconstrictive response induced by bradykinin in captopril-pretreated rats was inhibited by intratracheal treatment (i.t.) with HC030031 (300 µg/50 µl; 36 ± 9%) or HC067047 (300 µg/50 µl; 35.1 ± 16%), for TRPA1 and TRPV4 antagonists, respectively. However, the co-administration of both antagonists did not increase this inhibition. The bronchoconstriction induced by allyl isothiocyanate in captopril-pretreated rats (2.5 mg/kg) was inhibited (58.3 ± 8%) by the B2 receptor antagonist HOE140 (10 nmol/50 µl, i.t.). Similarly, the bronchoconstriction induced by GSK1016790A in captopril-pretreated rats (5 mg/kg) was also inhibited (84.2 ± 4%) by HOE140 (10 nmol/50 µl, i.t.). Furthermore, the plasma extravasation induced by captopril on the trachea of rats was inhibited by pretreatment with HC030031 (47.2 ± 8%) or HC067047 (38.9 ± 8%). Collectively, these findings support the hypothesis that TRPA1 and TRPV4, via a B2 receptor activation-dependent pathway, are involved in the plasma extravasation and bronchoconstriction induced by captopril, making them possible pharmacological targets to prevent or remediate ACEi-induced adverse respiratory reactions.


Assuntos
Broncoconstrição , Captopril , Animais , Bradicinina , Captopril/farmacologia , Ratos , Receptor B2 da Bradicinina/metabolismo , Canal de Cátion TRPA1 , Canais de Cátion TRPV , Traqueia/metabolismo
10.
Microb Pathog ; 137: 103717, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31494300

RESUMO

Mycoplasma hyopneumoniae is the etiological agent of enzootic pneumonia (EP), a widespread disease that causes major economic losses to the pig industry. The swine host response plays an important role in the outcome of M. hyopneumoniae infections. The whole proteome of newborn pig trachea (NPTr) epithelial cells infected with the M. hyopneumoniae pathogenic strain 7448 was analyzed using an LC-MS/MS approach to shed light on intracellular processes triggered in response to the pathogen. Overall, 853 swine protein species were identified, 156 of which were differentially represented in response to M. hyopneumoniae 7448 infection in comparison with non-infected control cells. These differentially represented proteins were categorized by function. Fifty-seven of them were assigned to the immune system and/or response to stimulus functional subcategories. Comparative expression analysis of these immune-related proteins in NPTr cells infected with attenuated or non-pathogenic mycoplasmas (M. hyopneumoniae J strain and M. flocculare, respectively) revealed proteins whose abundance was altered only in response to the pathogenic M. hyopneumoniae 7448 strain. Among these proteins, calcium homeostasis and endoplasmic reticulum stress-related biomarkers were detected, providing evidence of molecular mechanisms that might lead to swine cell apoptosis.


Assuntos
Citoplasma/metabolismo , Mycoplasma hyopneumoniae/patogenicidade , Proteoma , Doenças dos Suínos/metabolismo , Traqueia/metabolismo , Animais , Apoptose , Linhagem Celular , Cromatografia Líquida , Citoplasma/imunologia , Citoplasma/microbiologia , Ontologia Genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Proteoma/genética , Proteoma/isolamento & purificação , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Espectrometria de Massas em Tandem , Traqueia/imunologia , Traqueia/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA