Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Phytoremediation ; 25(13): 1819-1829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035876

RESUMO

Floating treatment wetlands (FTWs) are a cost-effective ecological engineering tool for the restoration of polluted water bodies. The aims of this work were to evaluate the removal of Cr(III) and Cr(VI) by FTWs using Typha domingensis, and to assess Cr accumulation and distribution in plant tissues and sediment. Treatments were 5 and 10 mg L-1 of Cr(III), and 5 and 10 mg L-1 of Cr(VI), with and without FTWs, and biological control (BC) with FTW without Cr addition. Both Cr species were efficiently removed from water in all treatments (Cr removal > 80%). Cr concentration in sediments of treatment without FTWs was significantly higher than in sediments of treatments with FTWs, indicating that T. domingensis was directly involved in Cr removal. In sediment, Cr was mainly bound to the organic matter in all treatments with a low risk of future release under FTW conditions. T. domingensis demonstrated tolerance to both Cr species at 5 and 10 mg L-1 with Cr accumulated mainly in the roots in all treatments. The use of FTWs planted with T. domingensis is a suitable tool to remediate water bodies contaminated with Cr.


This study evaluates the removal efficiency of Cr(III) and Cr(V) in Floating Treatment Wetlands planted with Typha domingensis in greenhouse experiments. Cr accumulation and distribution in plant tissues and different sediment fractions were also assessed.


Assuntos
Typhaceae , Poluentes Químicos da Água , Typhaceae/metabolismo , Áreas Alagadas , Biodegradação Ambiental , Poluentes Químicos da Água/metabolismo , Plantas/metabolismo , Água
2.
Sci Total Environ ; 650(Pt 1): 233-240, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30196224

RESUMO

The aim of this work was to study the efficiency of microcosms-scale floating treatment wetlands (FTWs) in the N and P removal from a synthetic runoff effluent and to evaluate the effluent tolerance of Typha domingensis. Each FTW consisted of a raft constructed with a plastic net where T. domingensis plants were installed. In order to evaluate the plant role, reactors with FTWs and without FTWs (controls) were used. P and N additions were carried out as follows: 5 mg L-1 P (P5 and P5-control); 10 mg L-1 N (N10 and N10-control); 5 mg L-1 P + 10 mg L-1 N (P5N10 and P5N10-control). Also, a biological control (B-control) without contaminant addition was used. The removal of soluble reactive phosphorus and total phosphorus were significantly higher in the FTWs than in the controls. Ammonium and nitrate concentrations were not significantly different between FTWs and controls at the end of the experiment. However, nitrate concentrations showed significant differences between FTWs and controls during the experiment. N and P were mainly accumulated in plant tissues and not in the sediment. Plants tolerated the effluent conditions and showed a positive growth rate. The use of FTWs is a promising strategy for the sustainable treatment of water bodies affected by runoff waters.


Assuntos
Nitrogênio/análise , Fósforo/análise , Typhaceae/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Áreas Alagadas
3.
Braz. j. biol ; 78(3): 509-516, Aug. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-951583

RESUMO

Abstract Typha domingensis (cattail) is a native macrophyte known by its capacity to tolerate several heavy metals effects and the potential use for phytoremediation. However, in despite that cadmium (Cd) is one of the most toxic pollutants; its effects in T. domingensis biology remain uninvestigated. Thus, the objective of this study was to study the tolerance of T. domingensis to cadmium contamination by evaluating its growth, Cd uptake, leaf anatomy and gas exchange. The experiment was designed using three cadmium concentrations (0, 10 and 50 µM) and ten replicates for 90 days. The cadmium uptake, growth, gas exchange, chlorophyll content and leaf anatomy were evaluated. Data was submitted to ANOVA and Scott-Knott test for P<0.05. Typha domingensis accumulates Cd proportionally to its concentration on the solution and the content of this metal was higher in roots as compared to shoots. Plants showed no significant modifications on growth parameters such as the biomass production, number of leaves, number of clones and the biomass allocation to organs. The photosynthesis, transpiration and chlorophyll content were not modified by Cd. Most anatomical traits evaluated were not modified by the metal but the stomatal density and the proportion of vascular tissues were reduced under 50 µM of Cd. In despite, the leaf anatomy showed no toxicity evidences for any Cd level. The absence of growth reduction and the stability of anatomical and physiological traits give insight about the Cd tolerance of this species. Therefore, T. domingensis is able to overcome Cd toxicity and shows potential for phytoremediation.


Resumo A espécie Typha domingensis (taboa) é uma macrófita nativa conhecida por sua tolerância a vários metais pesados e potencial uso na fitorremediação. Contudo, apesar de que o Cd é um dos poluentes mais tóxicos; Seus efeitos em T. domingensis ainda não foram investigados. Assim, o objetivo desse estudo foi avaliar a tolerância de T. domingensis ao cádmio, avaliando o crescimento, absorção de Cd, anatomia foliar e trocas gasosas. O experimento foi conduzido utilizando três concentrações de Cd (0, 10 e 50 µM) e dez repetições por 90 dias.. O crescimento, trocas gasosas e o teor de clorofila e anatomia foliar foram avaliados. Os dados foram submetidos à ANOVA e ao teste de Scott-Knott para P<0,05. A absorção de cádmio, crescimento, trocas gasosas, teor de clorofila e anatomia foliar foram analisados. As plantas de T. domingensis podem acumular Cd proporcionalmente à sua concentração na solução e o teor deste metal foi maior nas raízes em comparação com a parte aérea. As plantas não apresentam modificações significativas nos parâmetros de crescimento como produção de biomassa, número de folhas, número de clones produzidos e alocação de biomassa nos órgãos. A fotossíntese, transpiração e conteúdo de clorofila não foram afetados de forma significativa pelo Cd. A maioria das características anatômicas avaliadas não apresentou diferenças, mas houve redução na densidade estomática e na proporção de tecidos vasculares na concentração de 50 µM de Cd. A anatomia foliar não mostrou evidências de toxicidade em nenhum dos níveis de Cd. A ausência de redução de crescimento e estabilidade das características anatômicas e fisiológicas caracteriza alta tolerância da espécie ao Cd. Portanto, T. domingensis é capaz de superar a toxicidade do Cd e demostra potencial para fitorremediação.


Assuntos
Cádmio/metabolismo , Folhas de Planta/metabolismo , Typhaceae/crescimento & desenvolvimento , Typhaceae/metabolismo , Fotossíntese/fisiologia , Biodegradação Ambiental , Cádmio/toxicidade , Clorofila/metabolismo , Clorofila/química , Raízes de Plantas/metabolismo , Raízes de Plantas/química , Folhas de Planta/química , Biomassa , Relação Dose-Resposta a Droga
4.
Braz J Biol ; 78(3): 509-516, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29995113

RESUMO

Typha domingensis (cattail) is a native macrophyte known by its capacity to tolerate several heavy metals effects and the potential use for phytoremediation. However, in despite that cadmium (Cd) is one of the most toxic pollutants; its effects in T. domingensis biology remain uninvestigated. Thus, the objective of this study was to study the tolerance of T. domingensis to cadmium contamination by evaluating its growth, Cd uptake, leaf anatomy and gas exchange. The experiment was designed using three cadmium concentrations (0, 10 and 50 µM) and ten replicates for 90 days. The cadmium uptake, growth, gas exchange, chlorophyll content and leaf anatomy were evaluated. Data was submitted to ANOVA and Scott-Knott test for P<0.05. Typha domingensis accumulates Cd proportionally to its concentration on the solution and the content of this metal was higher in roots as compared to shoots. Plants showed no significant modifications on growth parameters such as the biomass production, number of leaves, number of clones and the biomass allocation to organs. The photosynthesis, transpiration and chlorophyll content were not modified by Cd. Most anatomical traits evaluated were not modified by the metal but the stomatal density and the proportion of vascular tissues were reduced under 50 µM of Cd. In despite, the leaf anatomy showed no toxicity evidences for any Cd level. The absence of growth reduction and the stability of anatomical and physiological traits give insight about the Cd tolerance of this species. Therefore, T. domingensis is able to overcome Cd toxicity and shows potential for phytoremediation.


Assuntos
Cádmio/metabolismo , Folhas de Planta/metabolismo , Typhaceae/crescimento & desenvolvimento , Typhaceae/metabolismo , Biodegradação Ambiental , Biomassa , Cádmio/toxicidade , Clorofila/química , Clorofila/metabolismo , Relação Dose-Resposta a Droga , Fotossíntese/fisiologia , Folhas de Planta/química , Raízes de Plantas/química , Raízes de Plantas/metabolismo
5.
Environ Sci Pollut Res Int ; 25(18): 18130-18137, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29691750

RESUMO

The aim of this work was to study Cr, Ni, Zn, and P bioaccumulation in different compartments of Typha domingensis plants and sediment in a free-water surface constructed wetland for the treatment of a metallurgical effluent for 5 years. Removal efficiencies were satisfactory. To increase metal tolerance, its transport from belowground to aboveground tissues is reduced, being metal concentrations in the roots and rhizomes significantly higher than in the aerial and submerged parts of leaves. Regarding belowground tissues, metals were retained in the roots, while P was mainly accumulated in rhizomes. Bioaccumulation factors (BAFs) of Cr and Ni showed values near 1, and BAF of Zn and P were above 1 in several samplings, indicating bioaccumulation in the roots. Translocation factors (TFs) of Cr, Ni, and Zn were below 1, showing a scarce translocation from the roots to the aerial parts of the leaves, while the TF of P were above 1 in many samplings, indicating that this element is necessary for plant metabolism. The study of plant tissues where contaminants are accumulated allows gaining insight into the constructed wetland operation. The high translocation of P in T. domingensis makes this species suitable for its phytoextraction, while the low metal translocation makes T. domingensis suitable for phytostabilization.


Assuntos
Cromo/análise , Níquel/análise , Fósforo/análise , Typhaceae/metabolismo , Áreas Alagadas , Zinco/análise , Argentina , Biodegradação Ambiental , Cromo/metabolismo , Metalurgia , Níquel/metabolismo , Fósforo/metabolismo , Typhaceae/crescimento & desenvolvimento , Zinco/metabolismo
6.
Environ Sci Pollut Res Int ; 25(1): 312-323, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29034426

RESUMO

The aims of this study were to measure the concentrations of nutrients and pollutants in peri-urban wetlands, to analyze the plant morphology of the most representative macrophyte species, and to determine their potential use as biomonitors. Four wetlands in the Middle Paraná River floodplain evidencing contamination or anthropogenic impact were studied. The studied species were Typha domingensis Pers., Eichhornia crassipes (Mart.) Solms., Alternanthera philoxeroides (Mart.) Griseb., and Pistia stratiotes L. Besides, the same plant species from an uncontaminated wetland considered as control were studied. A. philoxeroides showed the highest total phosphorus (TP) concentration in leaves throughout the study, while the other species showed a higher TP concentration in roots than in leaves. Since metal concentration in A. philoxeroides tissues was always higher than in sediment, further studies focused on its phytoremediation capacity should be carried out. T. domingensis exhibited the highest Zn concentrations in roots followed by Pb, and E. crassipes presented the highest values of Pb concentrations in roots. The aerial part height of the plants from peri-urban wetlands was significantly higher than that of the plants from the control, while the root length was significantly lower. The root length of P. stratiotes showed a negative correlation with soluble reactive phosphorus (SRP) concentration in water. All the root anatomical parameters of T. domingensis and E. crassipes showed a positive correlation with nitrate and ammonium concentrations in water. The studied macrophytes evidenced a high tolerance, enabling them to grow and survive in peri-urban wetlands that receive pollution from different sources. The use of aquatic and wetland plants as contaminant bioindicators and bioaccumulators in the Middle Paraná River floodplain is completely feasible.


Assuntos
Araceae/crescimento & desenvolvimento , Eichhornia/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Rios/química , Typhaceae/crescimento & desenvolvimento , Poluentes Químicos da Água/análise , Áreas Alagadas , Araceae/metabolismo , Argentina , Biodegradação Ambiental , Eichhornia/metabolismo , Nitratos/análise , Fósforo/análise , Typhaceae/metabolismo , Poluentes Químicos da Água/metabolismo
7.
Chemosphere ; 173: 190-198, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28110008

RESUMO

2,4-Dichlorophenol (2,4-DCP) is considered a priority pollutant due to its high toxicity. Therefore, it is urgent to develop technologies for the disposal of this pollutant. Various remediation processes have been proposed for the elimination of 2,4-DCP in contaminated water, however, most of them involve high costs of operation and maintenance. This study aimed to determine the capacity of remediation of 2,4-DCP in water by Typha latifolia L. wild plants. For that, the tolerance, removal, accumulation and biotransformation of 2,4-DCP by T. latifolia were investigated. The plants were exposed to 2,4-DCP solutions with a concentration range from 1.5 to 300 mgL-1 for 10 days. They exhibited a reduction in chlorophyll levels and growth rate when 2,4-DCP solutions were ≥30 mgL-1 and ≥50 mgL-1, respectively. The removal of contaminant was dose-depended, being 99.7% at 1.5-3 mgL-1, 59-70% at 10-70 mgL-1 and 35-42% at 100-300 mgL-1 of 2,4-DCP in the solution. Studies indicated that 2,4-DCP was mainly accumulated in root tissue rather than in shoot tissue. Acid hydrolysis of biomass extracts suggests 2,4-DCP bioconjugates formation in root tissue as a response mechanism. Additionally, an increment in glutathione S-transferase (GST) activity could indicate a 2,4-DCP conjugation with glutathione as a detoxification mechanism of T. latifolia.


Assuntos
Biodegradação Ambiental/efeitos dos fármacos , Biotransformação/efeitos dos fármacos , Clorofenóis/toxicidade , Tolerância a Medicamentos , Recuperação e Remediação Ambiental/métodos , Raízes de Plantas/metabolismo , Typhaceae/metabolismo , Anti-Helmínticos/isolamento & purificação , Anti-Helmínticos/toxicidade , Clorofenóis/isolamento & purificação , Glutationa Transferase/metabolismo , Poluentes Químicos da Água
8.
Int J Phytoremediation ; 19(1): 3-13, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27484186

RESUMO

Mexico's mercury mining industry is important for economic development, but has unfortunately contaminated soils due to open-air disposal. This case was seen at two sites in the municipality of Pinal de Amoles, State of Queretaro, Mexico. This paper presents an evaluation of mercury dynamics and biogeochemistry in two soils (mining waste soil) using ex-situ wetlands over 36 weeks. In soils sampled in two former mines of Pinal de Amoles, initial mercury concentrations were 424 ± 29 and 433 ± 12 mg kg-1 in La Lorena and San Jose, former mines, respectively. Typha latifolia and Phragmites australis were used and 20 reactors were constructed (with and without plants). The reactors were weekly amended with a nutrient solution (NPK), for each plant, at a pH of 5.0. For remediation using soils from San Jose 70-78% of mercury was removed in T. latifolia reactors and 76-82% in P. australis reactors, and for remediation of soils from La Lorena, mercury content was reduced by 55-71% using T. latifolia and 58-66% in P. australis reactors. Mercury emissions into the atmosphere were estimated to be 2-4 mg m-2 h-1 for both soils.


Assuntos
Mercúrio/metabolismo , Poaceae/metabolismo , Poluentes do Solo/metabolismo , Typhaceae/metabolismo , Áreas Alagadas , Biodegradação Ambiental , México , Mineração , Poaceae/crescimento & desenvolvimento , Typhaceae/crescimento & desenvolvimento
9.
Artigo em Inglês | MEDLINE | ID: mdl-26818608

RESUMO

Constructed wetlands have become an attractive alternative for wastewater treatment. However, there is not a globally accepted mathematical model to predict their performance. In this study, the VS2DTI software was used to predict the effluent biochemical oxygen demand (BOD) and total nitrogen (TN) in a pilot-scale vertical flow constructed wetland (VFCW) treating domestic wastewater. After a 5-week adaptation period, the pilot system was monitored for another 6 weeks. Experiments were conducted at hydraulic retention times (HRTs) in the range of 2-4 days with Typha latifolia as the vegetation. The raw wastewater concentrations ranged between 144-430 and 122-283 mg L(-1) for BOD5 and TN, respectively. A first-order kinetic model coupled with the advection/dispersion and Richards' equations was proposed to predict the removal rates of BOD5 and TN from domestic wastewater. Two main physical processes were modeled in this study, porous material water flow and solute transport through the different layers of the VFCW to simulate the constructed wetland (CW) conditions. The model was calibrated based on the BOD5 and TN degradation constants. The model indicated that most of BOD and TN (88 and 92%, respectively) were removed through biological activity followed by adsorption. It was also observed that the evapotranspiration was seen to have a smaller impact. An additional data series of effluent BOD and TN was used for model validation. The residual analysis of the calibrated model showed a relatively random pattern, indicating a decent fit. Thus, the VS2DTI was found to be a useful tool for CW simulation.


Assuntos
Desnitrificação , Nitrogênio/metabolismo , Typhaceae/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/química , Áreas Alagadas , Colômbia , Modelos Teóricos , Nitrogênio/análise , Projetos Piloto , Águas Residuárias/análise , Poluentes Químicos da Água/análise
10.
Artigo em Inglês | MEDLINE | ID: mdl-26252764

RESUMO

The aim of this study was to evaluate the effects of variations in the nitrogen loading rate (NLR) and seasonality on the operational efficiency of a free-water surface constructed wetland (FWS) and on the processes involved in total nitrogen (TN) removal in treating swine wastewater. The system, which operated for 550 days, consisted of a FWS mesocosm inoculated with Typha angustifolia L., using swine wastewater from a storage lagoon as an influent. After operating with nitrogen loading rates (NLRs) of 2.0 to 30.2 kg TN ha(-1)·d(-1), the FWS reduced total nitrogen (TN) concentration by between 21.6 and 51.0%, achieving maximum removal (48.2 ± 3.0%) when the system operated at a NLR below 15.0 kg TN ha(-1)·d(-1). Moreover, operations over 25.0 kg TN ha(-1)·d(-1) resulted in a 50.6% decrease in the maximum FWS efficiency, which may have been related to increased anoxic conditions (< 0.5 mg O2 L(-1); -169.8 ± 70.3 mV) resulting from the high concentration of organic matter in the system (12.3 ± 10.5 g TCOD L(-1)), which hindered nitrification. Ammonia volatilization is considered the main method to remove TN, with an average value of 14.4 ± 6.5% (3.1-26.2%). Maximum volatilization occurred during the summer (21.5 ± 2.4°C) at an NLR higher than 25 kg TN ha(-1)·d(-1) (26.6%), favored by higher temperatures (17.3-19.7°C), and high NH4(+)-N (>600.0 9 mg NH4(+)-N L(-1)) and pH levels (7.1-7.9). Uptake by plants accounted for 14.9% of the TN removed, with the vegetative peak in summer (height: 105.3 cm; diameter: 2.1 cm) at an NLR of 25.3 ± 0.3 kg TN ha(-1)·d(-1). However, growth decreased to 94.4% at an NLR of over 25.3 ± 0.3 kg TN ha(-1)·d(-1) (>379.9 mg NH4(+)-N L(-1)) in autumn (17.4 ± 2.4°C). This was associated with the period of plant senescence and the effects of ammonium phytotoxicity (379.9-624.2 mg NH4(+)-N L(-1)) and continued to the end of the study with the complete loss of macrophyte species. Finally, 1.5% of the TN removed was incorporated into the sediments where NH4(+)-N is the main form of nitrogen, with an accumulative value of 2.6 g m(-2).


Assuntos
Sedimentos Geológicos/química , Nitrogênio/química , Estações do Ano , Águas Residuárias/química , Poluentes Químicos da Água/análise , Amônia/química , Animais , Suínos , Typhaceae/metabolismo , Eliminação de Resíduos Líquidos , Água/química , Purificação da Água , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA