Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mar Drugs ; 22(7)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39057436

RESUMO

The marine kingdom is an important source of a huge variety of scaffolds inspiring the design of new drugs. The complex molecules found in the oceans present a great challenge to organic and medicinal chemists. However, the wide variety of biological activities they can display is worth the effort. In this article, we present an overview of different seaweeds as potential sources of bioactive pigments with activity against neurodegenerative diseases, especially due to their neuroprotective effects. Along with a broad introduction to seaweed as a source of bioactive pigments, this review is especially focused on astaxanthin and fucoxanthin as potential neuroprotective and/or anti-neurodegenerative agents. PubMed and SciFinder were used as the main sources to search and select the most relevant scientific articles within the field.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Alga Marinha , Xantofilas , Xantofilas/farmacologia , Xantofilas/química , Xantofilas/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Alga Marinha/química , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Pigmentos Biológicos/farmacologia , Pigmentos Biológicos/química , Pigmentos Biológicos/isolamento & purificação
2.
Biochim Biophys Acta Biomembr ; 1866(3): 184288, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286247

RESUMO

Staphylococcus aureus is an opportunistic pathogen that is considered a global health threat. This microorganism can adapt to hostile conditions by regulating membrane lipid composition in response to external stress factors such as changes in pH and ionic strength. S. aureus synthesizes and incorporates in its membrane staphyloxanthin, a carotenoid providing protection against oxidative damage and antimicrobial agents. Staphyloxanthin is known to modulate the physical properties of the bacterial membranes due to the rigid diaponeurosporenoic group it contains. In this work, preparative thin layer chromatography and liquid chromatography mass spectrometry were used to purify staphyloxanthin from S. aureus and characterize its structure, identifying C15, C17 and C19 as the main fatty acids in this carotenoid. Changes in the biophysical properties of models of S. aureus membranes containing phosphatidylglycerol, cardiolipin, and staphyloxanthin were evaluated. Infrared spectroscopy shows that staphyloxanthin reduces the liquid-crystalline to gel phase transition temperature in the evaluated model systems. Interestingly, these shifts are not accompanied by strong changes in trans/gauche isomerization, indicating that chain conformation in the liquid-crystalline phase is not altered by staphyloxanthin. In contrast, headgroup spacing, measured by Laurdan GP fluorescence spectroscopy, and lipid core dynamics, measured by DPH fluorescence anisotropy, show significant shifts in the presence of staphyloxanthin. The combined results show that staphyloxanthin reduces lipid core dynamics and headgroup spacing without altering acyl chain conformations, therefore decoupling these normally correlated effects. We propose that the rigid diaponeurosporenoic group in staphyloxanthin and its positioning in the membrane is likely responsible for the results observed.


Assuntos
Staphylococcus aureus , Xantofilas , Staphylococcus aureus/fisiologia , Xantofilas/química , Carotenoides , Fosfatidilgliceróis
3.
Int J Mol Sci ; 22(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34948418

RESUMO

Coloring is one of the most important characteristics in commercial flowers and fruits, generally due to the accumulation of carotenoid pigments. Enzymes of the CCD4 family in citrus intervene in the generation of ß-citraurin, an apocarotenoid responsible for the reddish-orange color of mandarins. Citrus CCD4s enzymes could be capable of interacting with the thylakoid membrane inside chloroplasts. However, to date, this interaction has not been studied in detail. In this work, we present three new complete models of the CCD4 family members (CCD4a, CCD4b, and CCD4c), modeled with a lipid membrane. To identify the preference for substrates, typical carotenoids were inserted in the active site of the receptors and the protein-ligand interaction energy was evaluated. The results show a clear preference of CCD4s for xanthophylls over aliphatic carotenes. Our findings indicate the ability to penetrate the membrane and maintain a stable interaction through the N-terminal α-helical domain, spanning a contact surface of 2250 to 3250 Å2. The orientation and depth of penetration at the membrane surface suggest that CCD4s have the ability to extract carotenoids directly from the membrane through a tunnel consisting mainly of hydrophobic residues that extends up to the catalytic center of the enzyme.


Assuntos
Carotenoides/metabolismo , Citrus/metabolismo , Dioxigenases/metabolismo , Proteínas de Plantas/metabolismo , Carotenoides/química , Citrus/química , Dioxigenases/química , Modelos Moleculares , Proteínas de Plantas/química , Ligação Proteica , Domínios Proteicos , Especificidade por Substrato , Xantofilas/química , Xantofilas/metabolismo
4.
Mar Drugs ; 19(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34564173

RESUMO

Astaxanthin (AST) is a biomolecule known for its powerful antioxidant effect, which is considered of great importance in biochemical research and has great potential for application in cosmetics, as well as food products that are beneficial to human health and medicines. Unfortunately, its poor solubility in water, chemical instability, and low oral bioavailability make its applications in the cosmetic and pharmaceutical field a major challenge for the development of new products. To favor the search for alternatives to enhance and make possible the use of AST in formulations, this article aimed to review the scientific data on its application in delivery systems. The search was made in databases without time restriction, using keywords such as astaxanthin, delivery systems, skin, cosmetic, topical, and dermal. All delivery systems found, such as liposomes, particulate systems, inclusion complexes, emulsions, and films, presented peculiar advantages able to enhance AST properties, among which are stability, antioxidant potential, biological activities, and drug release. This survey showed that further studies are needed for the industrial development of new AST-containing cosmetics and topical formulations.


Assuntos
Antioxidantes/administração & dosagem , Administração Cutânea , Animais , Antioxidantes/química , Organismos Aquáticos , Cosméticos , Composição de Medicamentos , Humanos , Salmão , Xantofilas/administração & dosagem , Xantofilas/química
5.
Molecules ; 25(24)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371297

RESUMO

Haematococcus pluvialis is the largest producer of natural astaxanthin in the world. Astaxanthin is a bioactive compound used in food, feed, nutraceutics, and cosmetics. In this study, astaxanthin extraction from H. pluvialis by supercritical fluid extraction was evaluated. The effects of temperature (40 and 50 °C), pressure (40 and 50 MPa), and CO2 flow rate (2 and 4 L/min) were investigated. The results showed that the highest astaxanthin recovery was obtained at 50 °C/50 MPa and the CO2 flow rates evaluated had no significant effect. It was possible to achieve astaxanthin recoveries of 95% after 175 min for a CO2 flow rate of 2 L/min, and 95 min for CO2 flow rate of 4 L/min. The ω-6/ω-3 ratios obtained were similar in all conditions, reaching 0.87, demonstrating that the extracts from H. pluvialis by SFE are rich in unsaturated fatty acids (UFA) which increases their positive effects when used as a functional ingredient in food.


Assuntos
Dióxido de Carbono/química , Clorofíceas/química , Cromatografia com Fluido Supercrítico/métodos , Ácidos Graxos/química , Microalgas/química , Tecnologia/métodos , Xantofilas/química
6.
Molecules ; 25(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075065

RESUMO

Astaxanthin is a powerful antioxidant, because it neutralizes free radicals and plays a vital role in the prevention of human diseases. The objective of this work was to develop an isotonic beverage (IB) of orange-red color, using an astaxanthin oleoresin emulsion (AOE) that is dispersible in water. This was carried out in order to simulate the color of commercial isotonic beverages (CIB) prepared from artificial pigments. The size of the AOE micelles ranged from 0.15 to 7.60 µm2. The color difference (ΔE) was similar for the samples exposed to dark as well as light conditions. The samples subjected to light stress showed pigment degradation after seven days, followed by a decrease in the concentration of astaxanthin; whereas, the samples exposed to dark conditions remained stable for seven days and then showed a decrease in the concentration of astaxanthin (this decrease ranged from 65% to 76% when compared to the initial content) after a period of 91 days. For the astaxanthin oleoresin (AO) and AOE, the oxygen radical absorbance capacity (ORAC) values reached 5224 and 1968 µmol of trolox equivalents (TE)/100 g, respectively. When exposed to light conditions, the addition of AOE in the IB led to its rapid degradation, while it remained stable in the samples exposed to the dark conditions.


Assuntos
Bebidas/análise , Extratos Vegetais/farmacologia , Água/química , Antioxidantes/química , Antioxidantes/farmacologia , Cor , Emulsões/química , Radicais Livres/química , Humanos , Extratos Vegetais/química , Xantofilas/química , Xantofilas/farmacologia
7.
AAPS PharmSciTech ; 21(1): 32, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31863211

RESUMO

Lipid nanoparticles (LNs) are traditional systems able to effectively increase skin hydration. However, due to its reduced viscosity, LNs suspensions are less attractive for skin administration. To overcome this disadvantage, the LN were incorporated in the semi-solid formulation is easy manipulation. This study demonstrated that it is possible to obtain novel LN-loaded fucoxanthin (LN-FUCO) for topical administration containing a combination of bacuri butter and tucumã oil prepared by high shear homogenization for improved stability. The particle size was found to be 243.0 nm and the entrapment efficiency up to 98% of FUCO was incorporated and achieved the suitability of formula. The LN-FUCO hydrogel characteristics of slight acidity, drug content near 100%, and nanometric mean size assure to this formulation high compatibility to dermal application. Photostability assay by UVA, LN-FUCO, and LN-FUCO hydrogel improved photostability and conferred greater protection against FUCO degradation. The results obtained from in vitro skin permeation studies presented a significant difference between LN-FUCO hydrogel and FUCO (p < 0.05), with no detection of the drug in the receptor medium. Therefore, high shear homogenization is demonstrated to be a simple, available, and effective method to prepare high-quality LN-FUCO hydrogel for topical application.


Assuntos
Lipídeos/química , Nanopartículas , Xantofilas/química , Administração Cutânea , Animais , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Hidrogéis/metabolismo , Tamanho da Partícula , Absorção Cutânea
8.
Food Funct ; 10(12): 8250-8262, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31720652

RESUMO

Carotenoid esters are present in considerable amounts in most fruits, such as in citrus. Although the bioavailability of carotenoid esters is similar or even higher compared to that of free carotenoids, these molecules are generally detected only in the free form in human plasma, suggesting that hydrolysis of carotenoid esters occurs in vivo. However, the available in vitro digestion methods were not able to achieve satisfactory carotenoid ester hydrolysis so far. As bile salts play an essential role in the hydrolytic action of lipolytic enzymes from pancreatin, we evaluated the effect of increasing the bile extract/food ratio from 0.045 to 0.12 (g g-1) on the hydrolysis of ß-cryptoxanthin esters from mandarin pulp during in vitro digestion. Additionally, considering the positive effect of lipids on carotenoid bioavailability, the impact of soybean oil addition on carotenoid ester hydrolysis was studied. Finally, bioaccessibility and recovery of 33 carotenoids were assessed by LC-DAD-MS. The hydrolysis extent of ß-cryptoxanthin esters enhanced from 29% to 55% by increasing the bile extract/food ratio, but reduced respectively to 28% and 11% by the addition of 1% and 10% oil (p < 0.05). The bioaccessibility of overall carotenoids improved from 19% to 35% by increasing the bile extract/food ratio, along with that of (all-E)-ß-carotene (from 19 to 31%) and total (all-E)-ß-cryptoxanthin (17% to 49%). Soybean oil addition reduced carotenoid micellarization, regardless of the concentration (p < 0.05). Irrespective of the bile extract amount and oil addition, the bioaccessibility of carotenoids was inversely related to its hydrophobicity, with respect to the following ranking: free xanthophylls > carotenes ≥ xanthophyll esters. Altogether, these results indicate that increasing the bile extract amount is a simple and inexpensive option to improve carotenoid ester hydrolysis in in vitro digestion protocols. Additionally, the constant amounts of bile (and possibly enzymes) of static methods, such as INFOGEST, should be further optimized for experiments involving lipid addition in which carotenoid bioaccessibility is evaluated.


Assuntos
Bile/química , Carotenoides/química , Ésteres/química , Digestão , Hidrólise , Xantofilas/química
9.
Bioprocess Biosyst Eng ; 42(12): 2015-2022, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31471708

RESUMO

Global energy demand is increasing every day and most is still derived from non-renewable sources. Therefore, sustainable alternatives are sought to produce biofuels, such as biodiesel. Several studies have demonstrated the potential of microalgae and cyanobacteria to produce biodiesel and pigments. These pigments, such as lutein and astaxanthin, have a high commercial value and can economically support the production of biodiesel. However, few studies have explored the potential of cyanobacteria collected in thermal water. In these microorganisms, both biomass and metabolites production can be altered by the culture form. Thus, a cosmopolitan filamentous cyanobacterium (Geitlerinema amphibium) from thermal water was collected and isolated to evaluate its potential to produce fatty acids, biodiesel, and pigments in two culture media. G. amphibium was cultured in WC (Wright's Cryptophyte) and BBM (Bold's Basal Medium) media. Thermal stress (40 °C for 48 h) was applied to the medium, which generated higher productivity of the biomass in BBM. The cyanobacterium contained higher biodiesel content in the WC medium and higher pigment content in the BBM medium. Thermal stress increased the biodiesel content by 350%, but decreased pigment content. Two pigments with high commercial value (astaxanthin and lutein) were identified. G. amphibium produced up to 2.74 mg g-1 of astaxanthin and 5.49 mg g-1 of lutein, which is seven times more lutein than Marigold, currently the main raw material used commercially. Therefore, G. amphibium has the potential to produce biodiesel, astaxanthin, and lutein concomitantly.


Assuntos
Biocombustíveis , Cianobactérias/metabolismo , Microbiologia Industrial/métodos , Pigmentos Biológicos/biossíntese , Água/química , Biomassa , Meios de Cultura , Ácidos Graxos/química , Lipídeos , Luteína/química , Microalgas , Análise de Regressão , Temperatura , Fatores de Tempo , Xantofilas/química
10.
Molecules ; 24(7)2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970551

RESUMO

Carotenoids are natural compounds that have important roles in promoting and maintaining human health. Synthetic astaxanthin is a highly requested product by the aquaculture industry, but natural astaxanthin is not. Various strategies have been developed to synthesize this carotenoid. Nonetheless, these approaches have not only provided limited global yields, but its main commercial source also carries several health risks for humans. In this contribution, the one-pot base-catalyzed reaction of (3R,3'R,6'R)-lutein (1) esters has resulted in a successful isomerization process to easily obtain up to 95% meso-zeaxanthin (2), which in turn is oxidized to (3R,3'S)-astaxanthin (3) with a global yield of 68%. The same oxidation performed with UV irradiation (365 nm) for 5 min provided the highest global yield (76%). These chemical transformations have also been achieved with a significant reduction of the health risks associated with its potential human consumption. Furthermore, this is the first time only one of the configurational isomers has been obtained semisynthetically. The poorly understood formation mechanisms of these two compounds were also investigated using Density-Functional Theory (DFT) calculations. These theoretical studies revealed that the isomerization involves a base-catalyzed deprotonation at C-6', followed by C-4' protonation, while the oxidation occurs via free radical mechanisms.


Assuntos
Luteína , Modelos Químicos , Humanos , Luteína/síntese química , Luteína/química , Estrutura Molecular , Estereoisomerismo , Xantofilas/síntese química , Xantofilas/química , Zeaxantinas/síntese química , Zeaxantinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA