Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 9788, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29955093

RESUMO

Mechanical stimuli play a key role in many cell functions such as proliferation, differentiation and migration. In the mammary gland, mechanical signals such as the distension of mammary epithelial cells due to udder filling are proposed to be directly involved during lactation and involution. However, the evolution of focal adhesions -specialized multiprotein complexes that mechanically connect cells with the extracellular matrix- during the mammary gland development, as well as the influence of the mechanical stimuli involved, remains unclear. Here we present the use of an equibiaxial stretching device for exerting a sustained normal strain to mammary epithelial cells while quantitatively assessing cell responses by fluorescence imaging techniques. Using this approach, we explored changes in focal adhesion dynamics in HC11 mammary cells in response to a mechanical sustained stress, which resembles the physiological stimuli. We studied the relationship between a global stress and focal adhesion assembly/disassembly, observing an enhanced persistency of focal adhesions under strain as well as an increase in their size. At a molecular level, we evaluated the mechanoresponses of vinculin and zyxin, two focal adhesion proteins postulated as mechanosensors, observing an increment in vinculin molecular tension and a slower zyxin dynamics while increasing the applied normal strain.


Assuntos
Células Epiteliais/metabolismo , Adesões Focais/metabolismo , Imageamento Tridimensional , Glândulas Mamárias Animais/citologia , Mecanotransdução Celular , Estresse Mecânico , Animais , Sobrevivência Celular , Feminino , Fluorescência , Recuperação de Fluorescência Após Fotodegradação , Cinética , Camundongos Endogâmicos BALB C , Fibras de Estresse/metabolismo , Vinculina/metabolismo , Zixina/metabolismo
2.
Acta Biomater ; 51: 161-174, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28069500

RESUMO

The control of cell behaviour through material geometry is appealing as it avoids the requirement for complex chemical surface modifications. Significant advances in new technologies have been made to the development of polymeric biomaterials with controlled geometry and physico-chemical properties. Solution blow spinning technique has the advantage of ease of use allowing the production of nano or microfibres and the direct fibre deposition on any surface in situ. Yet, in spite of these advantages, very little is known about the influence of such fibres on biological functions such as immune response and cell migration. In this work, we engineered polymeric fibres composed of either pure poly(lactic acid) (PLA) or blends of PLA and polyethylene glycol (PEG) by solution blow spinning and determined their impact on dendritic cells, highly specialised cells essential for immunity and tolerance. We also determined the influence of fibres on cell adhesion and motility. Cells readily interacted with fibres resulting in an intimate contact characterised by accumulation of actin filaments and focal adhesion components at sites of cell-fibre interactions. Moreover, cells were guided along the fibres and actin and focal adhesion components showed a highly dynamic behaviour at cell-fibre interface. Remarkably, fibres did not elicit any substantial increase of activation markers and inflammatory cytokines in dendritic cells, which remained in their immature (inactive) state. Taken together, these findings will be useful for developing new biomaterials for applications in tissue engineering and regenerative medicine.


Assuntos
Movimento Celular , Células Dendríticas/citologia , Engenharia Tecidual/métodos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Biomarcadores/metabolismo , Adesão Celular , Diferenciação Celular , Linhagem Celular , Citocinas/metabolismo , Células Dendríticas/ultraestrutura , Camundongos , Fenótipo , Soluções , Zixina/metabolismo
3.
Biochim Biophys Acta ; 1853(2): 388-95, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25450971

RESUMO

Vasodilator-stimulated phosphoprotein (VASP) and Zyxin are interacting proteins involved in cellular adhesion and motility. PKA phosphorylates VASP at serine 157, regulating VASP cellular functions. VASP interacts with ABL and is a substrate of the BCR-ABL oncoprotein. The presence of BCR-ABL protein drives oncogenesis in patients with chronic myeloid leukemia (CML) due to a constitutive activation of tyrosine kinase activity. However, the function of VASP and Zyxin in BCR-ABL pathway and the role of VASP in CML cells remain unknown. In vitro experiments using K562 cells showed the involvement of VASP in BCR-ABL signaling. VASP and Zyxin inhibition decreased the expression of anti-apoptotic proteins, BCL2 and BCL-XL. Imatinib induced an increase in phosphorylation at Ser157 of VASP and decreased VASP and BCR-ABL interaction. VASP did not interact with Zyxin in K562 cells; however, after Imatinib treatment, this interaction was restored. Corroborating our data, we demonstrated the absence of phosphorylation at Ser157 in VASP in the bone marrow of CML patients, in contrast to healthy donors. Phosphorylation of VASP on Ser157 was restored in Imatinib responsive patients though not in the resistant patients. Therefore, we herein identified a possible role of VASP in CML pathogenesis, through the regulation of BCR-ABL effector proteins or the absence of phosphorylation at Ser157 in VASP.


Assuntos
Benzamidas/farmacologia , Moléculas de Adesão Celular/metabolismo , Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Piperazinas/farmacologia , Pirimidinas/farmacologia , Zixina/metabolismo , Apoptose/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Proliferação de Células/efeitos dos fármacos , Células Clonais , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Técnicas de Silenciamento de Genes , Inativação Gênica/efeitos dos fármacos , Humanos , Mesilato de Imatinib , Células K562 , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA