Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 14(1): 306, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37880776

RESUMO

BACKGROUND: Skin tissue engineering is a rapidly evolving field of research that effectively combines stem cells and biological scaffolds to replace damaged tissues. Human Wharton's jelly mesenchymal stromal cells (hWJ-MSCs) are essential to generate tissue constructs, due to their potent immunomodulatory effects and release of paracrine factors for tissue repair. Here, we investigated whether hWJ-MSC grown on human acellular dermal matrix (hADM) scaffolds and exposed to a proinflammatory environment maintain their ability to produce in vitro growth factors involved in skin injury repair and promote in vivo wound healing. METHODS: We developed a novel method involving physicochemical and enzymatic treatment of cadaveric human skin to obtain hADM scaffold. Subsequently, skin bioengineered constructs were generated by seeding hWJ-MSCs on the hADM scaffold (construct 1) and coating it with human platelet lysate clot (hPL) (construct 2). Either construct 1 or 2 were then incubated with proinflammatory cytokines (IL-1α, IL-1ß, IL-6, TNF-α) for 12, 24, 48, 72 and 96 h. Supernatants from treated and untreated constructs and hWJ-MSCs on tissue culture plate (TCP) were collected, and concentration of the following growth factors, bFGF, EGF, HGF, PDGF, VEGF and Angiopoietin-I, was determined by immunoassay. We also asked whether hWJ-MSCs in the construct 1 have potential toward epithelial differentiation after being cultured in an epithelial induction stimulus using an air-liquid system. Immunostaining was used to analyze the synthesis of epithelial markers such as filaggrin, involucrin, plakoglobin and the mesenchymal marker vimentin. Finally, we evaluated the in vivo potential of hADM and construct 1 in a porcine full-thickness excisional wound model. RESULTS: We obtained and characterized the hADM and confirmed the viability of hWJ-MSCs on the scaffold. In both constructs without proinflammatory treatment, we reported high bFGF production. In contrast, the levels of other growth factors were similar to the control (hWJ-MSC/TCP) with or without proinflammatory treatment. Except for PDGF in the stimulated group. These results indicated that the hADM scaffold maintained or enhanced the production of these bioactive molecules by hWJ-MSCs. On the other hand, increased expression of filaggrin, involucrin, and plakoglobin and decreased expression of vimentin were observed in constructs cultured in an air-liquid system. In vivo experiments demonstrated the potential of both hADM and hADM/hWJ-MSCs constructs to repair skin wounds with the formation of stratified epithelium, basement membrane and dermal papillae, improving the appearance of the repaired tissue. CONCLUSIONS: hADM is viable to fabricate a tissue construct with hWJ-MSCs able to promote the in vitro synthesis of growth factors and differentiation of these cells toward epithelial lineage, as well as, promote in a full-thickness skin injury the new tissue formation. These results indicate that hADM 3D architecture and its natural composition improved or maintained the cell function supporting the potential therapeutic use of this matrix or the construct for wound repair and providing an effective tissue engineering strategy for skin repair.


Assuntos
Derme Acelular , Células-Tronco Mesenquimais , Geleia de Wharton , Humanos , Animais , Suínos , Proteínas Filagrinas , Vimentina/metabolismo , Derme Acelular/metabolismo , gama Catenina/metabolismo , gama Catenina/farmacologia , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo
2.
Clin Transl Oncol ; 23(3): 468-480, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32617870

RESUMO

PURPOSE: To explore FGF1 and miR-143-3p expression in hepatocellular carcinoma (HCC) cells and its related mechanisms. METHODS: Eighty-two HCC patients treated at our hospital from January 2018 to January 2019 were enrolled as Group A, while further 80 healthy people undergoing physical examinations during the same time period were enrolled as Group B. HCC cells and normal human liver cells were purchased, with HepG2 and SMMC-7721 cells transfected with pcDNA3.1-FGF1, si-FGF1, NC, miR-143-3p-inhibitor and miR-143-3p-mimics. FGF1 and miR-143-3p expression was detected by qRT-PCR. The expression of N-cadherin, vimentin, Snail, Slug, E-cadherin and γ-catenin was detected by Western Blotting (WB). Cell proliferation was detected by MTT assay. Cell invasion was detected by Transwell. Cell apoptosis was detected by flow cytometry (FCM). RESULTS: FGF1 was highly expressed but miR-143-3p was poorly expressed in HCC cells. Areas under the curves (AUCs) of the two indicators were > 0.8. The indicators were correlated with the age, gender, tumor invasion, degree of differentiation, tumor location and TNM staging of the patients. Silencing FGF1 and overexpressing miR-143-3p could promote cell apoptosis, inhibit cell growth, cell epithelial-mesenchymal transition (EMT) and the expression of N-cadherin, vimentin, Snail and Slug, and increase the expression of E-cadherin and γ-catenin. Dual luciferase reporter gene assay (DLRGA) confirmed that FGF1 and miR-143-3p had a targeted relationship. The rescue experiment showed that the proliferation, invasion and apoptosis of HepG2 and SMMC-7721 cells in the miR-143-3p-mimics+pcDNA3.1-FGF1 and miR-143-3p-inhibitor+Si-FGF1 groups were not different from those in the miR-NC group. CONCLUSION: Inhibiting FGF1 can upregulate miR-143-3p-mediated Hedgehog signaling pathway, and affect cells' EMT, proliferation and invasion, so FGF1 is expected to become a potential therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Fator 1 de Crescimento de Fibroblastos/metabolismo , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , Fatores Etários , Apoptose , Área Sob a Curva , Caderinas/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Fator 1 de Crescimento de Fibroblastos/genética , Citometria de Fluxo , Inativação Gênica , Humanos , Fígado/citologia , Neoplasias Hepáticas/patologia , Masculino , MicroRNAs/antagonistas & inibidores , Pessoa de Meia-Idade , Invasividade Neoplásica , Sondas RNA , Fatores Sexuais , Fatores de Transcrição da Família Snail/metabolismo , Vimentina/metabolismo , gama Catenina/metabolismo
3.
Cell Physiol Biochem ; 52(6): 1381-1397, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31075189

RESUMO

BACKGROUND/AIMS: Ouabain, a well-known plant-derived toxin, is also a hormone found in mammals at nanomolar levels that binds to a site located in the a-subunit of Na⁺,K⁺-ATPase. Our main goal was to understand the physiological roles of ouabain. Previously, we found that ouabain increases the degree of tight junction sealing, GAP junction-mediated communication and ciliogenesis. Considering our previous results, we investigated the effect of ouabain on adherens junctions. METHODS: We used immunofluorescence and immunoblot methods to measure the effect of 10 nM ouabain on the cellular and nuclear content of E-cadherin, ß-catenin and γ-catenin in cultured monolayers of Marin Darby canine renal cells (MDCK). We also studied the effect of ouabain on adherens junction biogenesis through sequential Ca²âº removal and replenishment. Then, we investigated whether c-Src and ERK1/2 kinases are involved in these responses. RESULTS: Ouabain enhanced the cellular content of the adherens junction proteins E-cadherin, ß-catenin and γ-catenin and displaced ß-catenin and γ-catenin from the plasma membrane into the nucleus. Ouabain also increased the expression levels of E-cadherin and ß-catenin in the plasma membrane after Ca²âº replenishment. These effects on adherens junctions were sensitive to PP2 and PD98059, suggesting that they depend on c-Src and ERK1/2 signaling. The translocation of ß-catenin and γ-catenin into the nucleus was specific because ouabain did not change the localization of the tight junction proteins ZO-1 and ZO-2. Moreover, in ouabain-resistant MDCK cells, which express a Na⁺,K⁺-ATPase α1-subunit with low affinity for ouabain, this hormone was unable to regulate adherens junctions, indicating that the ouabain receptor that regulates adherens junctions is Na⁺,K⁺-ATPase. CONCLUSION: Ouabain (10 nM) upregulated adherens junctions. This novel result supports the proposition that one of the physiological roles of this hormone is the modulation of cell contacts.


Assuntos
Junções Aderentes/efeitos dos fármacos , Ouabaína/farmacologia , Junções Aderentes/metabolismo , Animais , Proteína Tirosina Quinase CSK , Caderinas/metabolismo , Cálcio/metabolismo , Núcleo Celular/metabolismo , Cães , Células Madin Darby de Rim Canino , Microscopia de Fluorescência , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , beta Catenina/metabolismo , gama Catenina/metabolismo , Quinases da Família src/metabolismo
4.
Oncol Rep ; 30(1): 285-91, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23670055

RESUMO

Cell-cell adhesion is mediated by members of the cadherin-catenin system and among them E-cadherin and ß-catenin are important adhesion molecules for epithelial cell function and preservation of tissue integrity. To investigate the importance of cell adhesion molecules in breast carcinogenesis, we developed an in vitro breast cancer model system wherein immortalized human breast epithelial cell line, MCF-10F, was malignantly transformed by exposure to low doses of high linear energy transfer (LET) α particle radiation (150 keV/µm) and subsequent growth in the presence or absence of 17ß-estradiol. This model consisted of human breast epithelial cells in different stages of transformation: i) parental cell line MCF-10F; ii) MCF-l0F continuously grown with estradiol at 10(-8) (Estrogen); iii) a non-malignant cell line (Alpha3); and iv) a malignant and tumorigenic cell line (Alpha5) and the Tumor2 cell line derived from the nude mouse xenograft of the Alpha5 cell line. Expression levels of important cell adhesion molecules such as α-catenin, ß-catenin, γ-catenin, E-cadherin and integrin were found to be higher at the protein level in the Alpha5 and Tumor2 cell lines relative to these levels in the non-tumorigenic MCF-10F, Estrogen and Alpha3 cell lines. In corroboration, cDNA expression analysis revealed elevated levels of genes involved in the cell adhesion function [E-cadherin, integrin ß6 and desmocollin3 (DSc3)] in the Alpha5 and Tumor2 cell lines relative to the levels in the MCF-10F, Estrogen and Alpha3 cell lines. Collectively, our results suggest that cell adhesion molecules are expressed at higher levels in malignantly transformed breast epithelial cells relative to levels in non-malignant cells. However, reduced levels of adhesion molecules observed in the mouse xenograft-derived Tumor 2 cell line compared to the pre-tumorigenic Alpha5 cell line suggests that the altered expression levels of adhesion molecules depend on the tumor tissue microenvironment.


Assuntos
Neoplasias da Mama/metabolismo , Moléculas de Adesão Celular/biossíntese , Moléculas de Adesão Celular/metabolismo , Neoplasias Induzidas por Radiação/metabolismo , Animais , Caderinas/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/efeitos da radiação , Desmocolinas , Feminino , Xenoenxertos , Humanos , Cadeias beta de Integrinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Nus , Transplante de Neoplasias , Radiação Ionizante , Microambiente Tumoral , alfa Catenina/metabolismo , beta Catenina/metabolismo , gama Catenina/metabolismo
5.
J Cell Biochem ; 100(3): 738-49, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17009320

RESUMO

The cdk5/p35 complex has been implicated in a variety of functions related to brain development, including axonal outgrown and neuronal migration. In this study, by co-immunoprecipitation and pull-down experiments, we have shown that the cdk5/p35 complex associates with and phosphorylates the neuronal delta-catenin. Immunocytochemical studies of delta-catenin and the cdk5-activator p35 in primary cortical neurons indicated that these proteins co-localize in the cell body of neuronal cells. In addition, cdk5 co-localized with beta-catenin in the cell-cell contacts and plasma membrane of undifferentiated and differentiated N2A cells. In this context, we identified Ser(191) and Ser(246) on beta-catenin structure as specific phosphorylation sites for cdk5/p35 complex. Moreover, Pin1, a peptidyl-prolyl isomerase (PPIase) directly bound to both, beta- and delta-catenin, once they have been phosphorylated by the cdk5/p35 complex. Studies indicate that the cdk5/p35 protein kinase system is directly involved in the regulatory mechanisms of neuronal beta- and delta-catenin.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Quinase 5 Dependente de Ciclina/fisiologia , Neurônios/metabolismo , beta Catenina/metabolismo , gama Catenina/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Imunofluorescência , Mutagênese Sítio-Dirigida , Fosforilação , Ligação Proteica , Ratos , Ratos Sprague-Dawley , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA