Your browser doesn't support javascript.
loading
Determining the geographical origin of lettuce with data mining applied to micronutrients and soil properties
Maione, Camila; Araujo, Eloá Moura; Santos-Araujo, Sabrina Novaes dos; Boim, Alexys Giorgia Friol; Barbosa, Rommel Melgaço; Alleoni, Luís Reynaldo Ferracciú.
Afiliação
  • Maione, Camila; Universidade Federal de Goiás. Instituto de Informática. Goiânia. BR
  • Araujo, Eloá Moura; Universidade de São Paulo - USP. Escola Superior de Agronomia "Luiz de Queiroz" - ESALQ. Departamento de Ciência do Solo. Piracicaba. BR
  • Santos-Araujo, Sabrina Novaes dos; Universidade de São Paulo - USP. Escola Superior de Agronomia "Luiz de Queiroz" - ESALQ. Departamento de Ciência do Solo. Piracicaba. BR
  • Boim, Alexys Giorgia Friol; Universidade de São Paulo - USP. Escola Superior de Agronomia "Luiz de Queiroz" - ESALQ. Departamento de Ciência do Solo. Piracicaba. BR
  • Barbosa, Rommel Melgaço; Universidade Federal de Goiás. Instituto de Informática. Goiânia. BR
  • Alleoni, Luís Reynaldo Ferracciú; Universidade de São Paulo - USP. Escola Superior de Agronomia "Luiz de Queiroz" - ESALQ. Departamento de Ciência do Solo. Piracicaba. BR
Sci. agric ; 79(01): 1-15, 2022. map, tab, ilus, graf
Article em En | VETINDEX | ID: biblio-1498016
Biblioteca responsável: BR68.1
Localização: BR68.1
ABSTRACT
Lettuce (Lactuca sativa) is the main leafy vegetable produced in Brazil. Since its production is widespread all over the country, lettuce traceability and quality assurance is hampered. In this study, we propose a new method to identify the geographical origin of Brazilian lettuce. The method uses a powerful data mining technique called support vector machines (SVM) applied to elemental composition and soil properties of samples analyzed. We investigated lettuce produced in São Paulo and Pernambuco, two states in the southeastern and northeastern regions in Brazil, respectively. We investigated efficiency of the SVM model by comparing its results with those achieved by traditional linear discriminant analysis (LDA). The SVM models outperformed the LDA models in the two scenarios investigated, achieving an average of 98 % prediction accuracy to discriminate lettuce from both states. A feature evaluation formula, called F–score, was used to measure the discriminative power of the variables analyzed. The soil exchangeable cation capacity, soil contents of low crystalized Al and Zn content in lettuce samples were the most relevant components for differentiation. Our results reinforce the potential of data mining and machine learning techniques to support traceability strategies and authentication of leafy vegetables.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: VETINDEX Assunto principal: Análise do Solo / Química do Solo / Lactuca / Mineração de Dados Idioma: En Revista: Sci. agric Ano de publicação: 2022 Tipo de documento: Article / Project document

Texto completo: 1 Base de dados: VETINDEX Assunto principal: Análise do Solo / Química do Solo / Lactuca / Mineração de Dados Idioma: En Revista: Sci. agric Ano de publicação: 2022 Tipo de documento: Article / Project document