Your browser doesn't support javascript.
loading
Harnessing Small-Molecule Analyte Detection in Complex Media: Combining Molecularly Imprinted Polymers, Electrolytic Transistors, and Machine Learning.
Lelis, Gabrielle Coelho; Fonseca, Wilson Tiago; de Lima, Alessandro Henrique; Okazaki, Anderson Kenji; Figueiredo, Eduardo Costa; Riul, Antonio; Schleder, Gabriel Ravanhani; Samorì, Paolo; de Oliveira, Rafael Furlan.
Afiliação
  • Lelis GC; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-100, Brazil.
  • Fonseca WT; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-100, Brazil.
  • de Lima AH; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-100, Brazil.
  • Okazaki AK; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-100, Brazil.
  • Figueiredo EC; Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, MG 37130-001, Brazil.
  • Riul A; Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, SP 13083-859, Brazil.
  • Schleder GR; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-100, Brazil.
  • Samorì P; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.
  • de Oliveira RF; Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg 67000, France.
Article em En | MEDLINE | ID: mdl-38134415
ABSTRACT
Small-molecule analyte detection is key for improving quality of life, particularly in health monitoring through the early detection of diseases. However, detecting specific markers in complex multicomponent media using devices compatible with point-of-care (PoC) technologies is still a major challenge. Here, we introduce a novel approach that combines molecularly imprinted polymers (MIPs), electrolyte-gated transistors (EGTs) based on 2D materials, and machine learning (ML) to detect hippuric acid (HA) in artificial urine, being a critical marker for toluene intoxication, parasitic infections, and kidney and bowel inflammation. Reduced graphene oxide (rGO) was used as the sensory material and molecularly imprinted polymer (MIP) as supramolecular receptors. Employing supervised ML techniques based on symbolic regression and compressive sensing enabled us to comprehensively analyze the EGT transfer curves, eliminating the need for arbitrary signal selection and allowing a multivariate analysis during HA detection. The resulting device displayed simultaneously low operating voltages (<0.5 V), rapid response times (≤10 s), operation across a wide range of HA concentrations (from 0.05 to 200 nmol L-1), and a low limit of detection (LoD) of 39 pmol L-1. Thanks to the ML multivariate analysis, we achieved a 2.5-fold increase in the device sensitivity (1.007 µA/nmol L-1) with respect to the human data analysis (0.388 µA/nmol L-1). Our method represents a major advance in PoC technologies, by enabling the accurate determination of small-molecule markers in complex media via the combination of ML analysis, supramolecular analyte recognition, and electrolytic transistors.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos