Your browser doesn't support javascript.
loading
Toxic effects of environmental-relevant exposure to polyethylene terephthalate (PET) micro and nanoparticles in zebrafish early development.
de Souza Teodoro, Lilian; Jablonski, Camilo Alexandre; Pelegrini, Kauê; Pereira, Talita Carneiro Brandão; Maraschin, Thuany Garcia; de Sousa Araujo, Alan Carvalho; Monserrat, Jose Maria; de Souza Basso, Nara Regina; Kist, Luiza Wilges; Bogo, Maurício Reis.
Afiliação
  • de Souza Teodoro L; Laboratory of Genomics and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), School of Health and Life Sciences, Av. Ipiranga, 6681 Porto Alegre, RS, Brazil; Graduate Program in Cellular and Molecular Biology, PUCRS, Av. Ipiranga, 6681 Porto Alegre, RS, Brazil.
  • Jablonski CA; Laboratory of Genomics and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), School of Health and Life Sciences, Av. Ipiranga, 6681 Porto Alegre, RS, Brazil; Graduate Program in Medicine and Health Sciences, PUCRS, Av. Ipiranga, 6690 Porto Alegre, RS, Brazil.
  • Pelegrini K; Organometallic Compounds and Resins Laboratory, School of Technology, PUCRS, Porto Alegre, RS, Brazil; Graduate Program in Materials Technology and Engineering, PUCRS, Porto Alegre, RS, Brazil.
  • Pereira TCB; Laboratory of Genomics and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), School of Health and Life Sciences, Av. Ipiranga, 6681 Porto Alegre, RS, Brazil; Graduate Program in Medicine and Health Sciences, PUCRS, Av. Ipiranga, 6690 Porto Alegre, RS, Brazil.
  • Maraschin TG; Organometallic Compounds and Resins Laboratory, School of Technology, PUCRS, Porto Alegre, RS, Brazil; Graduate Program in Materials Technology and Engineering, PUCRS, Porto Alegre, RS, Brazil.
  • de Sousa Araujo AC; Graduate Program in Aquaculture, Institute of Oceanography (IO), Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil.
  • Monserrat JM; Graduate Program in Aquaculture, Institute of Oceanography (IO), Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil; Institute of Biological Sciences (ICB), Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil.
  • de Souza Basso NR; Graduate Program in Materials Technology and Engineering, PUCRS, Porto Alegre, RS, Brazil.
  • Kist LW; Laboratory of Genomics and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), School of Health and Life Sciences, Av. Ipiranga, 6681 Porto Alegre, RS, Brazil; Graduate Program in Cellular and Molecular Biology, PUCRS, Av. Ipiranga, 6681 Porto Alegre, RS, Brazil.
  • Bogo MR; Laboratory of Genomics and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), School of Health and Life Sciences, Av. Ipiranga, 6681 Porto Alegre, RS, Brazil; Graduate Program in Cellular and Molecular Biology, PUCRS, Av. Ipiranga, 6681 Porto Alegre, RS, Brazil; Graduate
NanoImpact ; 33: 100497, 2024 Jan.
Article em En | MEDLINE | ID: mdl-38316295
ABSTRACT
Polyethylene terephthalate (PET) is a commonly used thermoplastic in industry due to its excellent malleability and thermal stability, making it extensively employed in packaging manufacturing. Inadequate disposal of PET packaging in the environment and natural physical-chemical processes leads to the formation of smaller particles known as PET micro and nanoplastics (MNPs). The reduced dimensions enhance particle bioavailability and, subsequently, their reactivity. This study involved chemical degradation of PET using trifluoroacetic acid to assess the impact of exposure to varying concentrations of PET MNPs (0.5, 1, 5, 10, and 20 mg/L) on morphological, functional, behavioral, and biochemical parameters during the early developmental stages of zebrafish (Danio rerio). Characterization of the degraded PET revealed the generated microplastics (MPs) ranged in size from 1305 to 2032 µm, and that the generated nanoplastics (NPs) ranged from 68.06 to 955 nm. These particles were then used for animal exposure. After a six-day exposure period, our findings indicate that PET MNPs can diminish spontaneous tail coiling (STC), elevate the heart rate, accumulate on the chorion surface, and reduce interocular distance. These results suggest that PET exposure induces primary toxic effects on zebrafish embryo-larval stage of development.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Nanopartículas Limite: Animals Idioma: En Revista: NanoImpact Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Nanopartículas Limite: Animals Idioma: En Revista: NanoImpact Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Holanda