Your browser doesn't support javascript.
loading
Sustainable Zeolite-Silver Nanocomposites via Green Methods for Water Contaminant Mitigation and Modeling Approaches.
Ruíz-Baltazar, Álvaro de Jesús; Reyes-López, Simón Yobanny; Méndez-Lozano, Néstor; Medellín-Castillo, Nahum Andrés; Pérez, Ramiro.
Afiliação
  • Ruíz-Baltazar ÁJ; CONAHCYT-Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Mexico.
  • Reyes-López SY; Laboratorio de Materiales Híbridos Nanoestructurados, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo s/n, Zona Pronaf, Ciudad Juárez 32310, Mexico.
  • Méndez-Lozano N; Laboratorio de Materiales Híbridos Nanoestructurados, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo s/n, Zona Pronaf, Ciudad Juárez 32310, Mexico.
  • Medellín-Castillo NA; Campus Querétaro, Universidad del Valle de México, Blvd. Juriquilla No. 1000 A Del., Santa Rosa Jáuregui 76230, Mexico.
  • Pérez R; Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava No. 8, Zona Universitaria, San Luis Potosí 78210, Mexico.
Nanomaterials (Basel) ; 14(3)2024 Jan 25.
Article em En | MEDLINE | ID: mdl-38334529
ABSTRACT
This study explores cutting-edge and sustainable green methodologies and technologies for the synthesis of functional nanomaterials, with a specific focus on the removal of water contaminants and the application of kinetic adsorption models. Our research adopts a conscientious approach to environmental stewardship by synergistically employing eco-friendly silver nanoparticles, synthesized using Justicia spicigera extract as a biogenic reducing agent, in conjunction with Mexican zeolite to enhance contaminant remediation, particularly targeting Cu2+ ions. Structural analysis, utilizing X-ray diffraction (XRD) and high-resolution scanning and transmission electron microscopy (TEM and SEM), yields crucial insights into nanocomposite structure and morphology. Rigorous linear and non-linear kinetic models, encompassing pseudo-first order, pseudo-second order, Freundlich, and Langmuir, are employed to elucidate the kinetics and equilibrium behaviors of adsorption. The results underscore the remarkable efficiency of the Zeolite-Ag composite in Cu2+ ion removal, surpassing traditional materials and achieving an impressive adsorption rate of 98% for Cu. Furthermore, the Zeolite-Ag composite exhibits maximum adsorption times of 480 min. In the computational analysis, an initial mechanism for Cu2+ adsorption on zeolites is identified. The process involves rapid adsorption onto the surface of the Zeolite-Ag NP composite, followed by a gradual diffusion of ions into the cavities within the zeolite structure. Upon reaching equilibrium, a substantial reduction in copper ion concentration in the solution signifies successful removal. This research represents a noteworthy stride in sustainable contaminant removal, aligning with eco-friendly practices and supporting the potential integration of this technology into environmental applications. Consequently, it presents a promising solution for eco-conscious contaminant remediation, emphasizing the utilization of green methodologies and sustainable technologies in the development of functional nanomaterials.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: México País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: México País de publicação: Suíça